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Abstract: Quercus alba L., also known as white oak, eastern white oak, or American white oak, is a
quintessential North American species within the white oak section (Quercus) of the genus Quercus,
subgenus Quercus. This species plays a vital role as a keystone species in eastern North American
forests and plays a significant role in local and regional economies. As a long-lived woody perennial
covering an extensive natural range, Q. alba’s biology is shaped by a myriad of adaptations accumu-
lated throughout its natural history. Populations of Q. alba are crucial repositories of genetic, genomic,
and evolutionary insights, capturing the essence of successful historical adaptations and ongoing
responses to contemporary environmental challenges in the Anthropocene. This intersection offers an
exceptional opportunity to integrate genomic knowledge with the discovery of climate-relevant traits,
advancing tree improvement, forest ecology, and forest management strategies. This review provides
a comprehensive examination of the current understanding of Q. alba’s biology, considering past,
present, and future research perspectives. It encompasses aspects such as distribution, phylogeny,
population structure, key adaptive traits to cyclical environmental conditions (including water use,
reproduction, propagation, and growth), as well as the species’ resilience to biotic and abiotic stres-
sors. Additionally, this review highlights the state-of-the-art research resources available for the
Quercus genus, including Q. alba, showcasing developments in genetics, genomics, biotechnology, and
phenomics tools. This overview lays the groundwork for exploring and elucidating the principles
of longevity in plants, positioning Q. alba as an emerging model tree species, ideally suited for
investigating the biology of climate-relevant traits.

Keywords: Quercus alba; adaptations; environmental stress; Anthropocene; woody perennial; climate-
relevant traits; research resources
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1. Introduction

Oaks (Quercus spp.), as long-lived deciduous trees, are central to the biology of our
planet, both as individual species and as members of complex ecosystems. Oaks underpin
many regional and local economies worldwide and have been of great cultural signifi-
cance for eons. Collectively, oak species contribute, either directly or indirectly, to human
nutrition, medicines, energy, paper, construction materials, and ornamental landscape
applications, and are socially and culturally significant, even in our advanced technol-
ogy era [1]. Oaks are often dominant species within natural ecosystems, store significant
amounts of sequestered carbon, provide ecosystem services such as water purification
and oxygen production, and serve as keystone species that anchor complex multi-trophic
communities [2]. These attributes derive in large part from the life history strategy of trees
as long-living woody perennial plants, with the ability to adapt acutely and chronically to
ever-changing environmental conditions [3,4]. Critically, the genomic evidence reveals that
oaks have so far exhibited rapid adaptation to the changing climate of the Anthropocene [5],
a chapter in history that is only just beginning.

1.1. Quercus alba L.

Quercus alba is the archetypic representative of the Quercus (‘white oak’) section of
the oak genus Quercus (for phenotypic identifiers see Figure 1A), one of eight genera in
the Fagaceae (beech) family. In eastern North America, one of the most important tree
species to communities, regional economies, and industries, as well as being a keystone
species of natural forest ecosystems [2]. The species accounts for the largest volume of
oak lumber harvested from US forests, for use in flooring, furniture, construction, and the
production of millions of barrels every year for the wine and spirits industry [6,7]. Quercus
alba acorns serve as an important dietary component for many wild animal species, of
prime importance after extirpation of the American chestnut (Castanea dentata).

Quercus alba has historically been a dominant canopy species in the central and eastern
hardwood forests of North America from pre-European settlement times, providing impor-
tant ecosystem services including habitat for a wide diversity of organisms, sequestering
carbon, and filtering air and water [8–13] (Figure 1B). With the changing land-use patterns,
Q. alba recruitment (growth into the forest canopy) declined during the 20th century with a
concomitant decrease in white oak presence in North American forests (Figure 1C). Con-
trastingly, other oaks prospered during this period, leading to several important questions
whose answers are critical to forecasting the future of the species, especially in rapidly
changing climate scenarios. As posed by Abrams (2003 [8]), “Why did white oak, among
all the upland oaks, dominate in the presettlement forest? What restricted the development
of red oak in the presettlement forest on sites that it currently dominates? What role did
anthropogenic factors play in the expansion of red oak and chestnut oak versus white oak?
What ecophysiological limitations make white oak more susceptible than other oaks to the
dramatic changes in land use over the past few hundred years?” Key to answering these
questions is understanding the oak trait biology associated with competitive success in
environmental niche adaptations. Thus, in Q. alba and other sympatric forest tree species,
a more systematic, integrative understanding is needed; this would ideally encompass
root/mycorrhizal biology, root/stem/leaf water transport, and vascular dynamics, as
well as the physiological and genetic control of these traits and phenology, masting, and
seedling regeneration in normal and abiotic/biotic stress conditions. Predicting the future
competitive success of Q. alba in a rapidly changing climate (Figure 1D) will rely on under-
standing the degree of the plasticity of these traits and the reproductive, recruitment, and
evolutionary constraints on long-lived perennial species.
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Figure 1. Q. alba, its range, and examples of healthy and disease/pest conditions. (A) Q. alba
identifiers—bark, leaves, acorns; (B) Historical natural range of Q. alba; (C) Current Forest Inventory
and Analysis; (D) Projected future habitat under harsh climate scenario; (E) Very old, healthy pasture
tree; (F) Healthy seed orchard tree, Murphy NC; (G) White oak forest stand; (H) Natural regeneration;
(I) Phytophthora root and crown rot; (J) Tree with oak wilt from Bretziella fagacearum; (K) Tree with
oak decline; (L) Hypoxylon cankers; (M) Anthracnose (Discula quercina); (N) Botryosphaeria cankers;
(O) Lymantia dispar (gypsy moth); (P) Acorn and nut weevils (Genus Curculio); (Q) Roots of 25-
year-old oak tree showing taproot; (R) Masting Q. alba tree, Garrett County, MD, 2022; (S) Catkin
on flowering Q. alba graft in the greenhouse; (T) Close-up of healthy branch with mature acorns;
(U) Weevil exiting germinating acorn (long, healthy taproot, but the shoot is damaged and will not
emerge); (V) Germinating acorns. Credits: (A) Laura DeWald; (B) The United States Geological Survey;
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(C,D) USDA Forest Service https://www.fs.usda.gov/nrs/atlas/tree/802 (accessed on 30 Novem-
ber 2023); (E) John Carlson; (F–H) Laura DeWald; (I,K) Joseph OBrien, USDA Forest Service,
https://www.bugwood.org/; (J) Fred Baker, Utah State University, https://www.bugwood.org/;
(L) Pennsylvania Department of Conservation and Natural Resources—Forestry, https://www.
bugwood.org/; (M,N) Bruce Watt, University of Maine, https://www.bugwood.org/; (O) John
Ghent_Bugwood.org; (P) Louisiana State University, https://www.bugwood.org/; (Q) USDA Forest
Service https://www.fs.usda.gov/; (R) William Buckel; (S–V) Laura DeWald.

1.2. Challenges for Oaks in the Anthropocene

Due to the continued rapid warming of the Earth during the Anthropocene, climate
change is and will continue to impact the sustainability of global forest tree resources, both
directly and indirectly [5]. Given sufficient time as regional climate conditions change,
species may adapt to changing environments. However, rapid environmental changes pose
major challenges to perennial species with very long generation times. This is particularly
true for trees which can have long juvenility periods and cycles of flowering, seed produc-
tion, and seed germination that are dependent on specific environmental conditions. Since
adaptation relies on reproduction, the continued survival of long-lived species in their
current locations is particularly uncertain. Indeed, direct impacts of recent global warming
on tree reproduction are being reported in both fruit orchard and forest trees [14–19], and
research is needed to understand the impact on perennials as climate change advances.

Considering the importance of oaks to ecosystems and the human endeavor, it is
surprising how fragmented our climate-relevant knowledge of the biology of oak species is
in comparison to that of economically important herbaceous species [20]. This is, in part, the
result of long-lived perennial trees having been considered difficult models for the study of
basic cellular, physiological, or genetic processes. Multiple reasons for this are apparent, but,
particularly, the long sexual generation times and difficult asexual propagation methods are
considered most inhibitory for basic research. This contrasts with annual crops and model
plants where generation cycles can be months, not decades, providing well-controlled
genetic materials for study. However, the realities of climate change, an ever-increasing
population needing shelter and energy, and our emerging understanding of the crucial
role that oak trees play in our environment have become compelling forces for important
oak biology research across all levels, from cellular and whole-plant physiology, genetics,
and genomics to forest ecology and species conservation. Rapidly advancing molecular
technologies and large-scale, big data-driven approaches have generated powerful model
systems for trees [21–24]. The study of oak biology provides new opportunities to delve
deeper into the key features that define woody perennial plants and are shared among oaks
and other hardwood forest trees [25].

The intent of this communication is to present an emerging picture of the current
knowledge on Q. alba biology drawn from previous, ongoing, and future research per-
spectives as an example of a North American oak species that is critically important to
regional/global economies and natural ecosystems. It is particularly timely as the sustain-
ability of forests, including oak forests, are impacted by a rapidly changing environment.
This overview aims to provide a foundation for defining and studying the emerging princi-
ples of long-lived perennial trees with a special emphasis on challenges posed to Q. alba
in the Anthropocene, especially those related to the need for mitigation of climate change
impacts and improvement of natural regeneration. For more detailed reviews of related
phylogeny, diversity, ecology, and evolutionary studies on other Quercus species from the
growing global community of oak researchers, readers are directed to other recent works
such as [26,27].

https://www.fs.usda.gov/nrs/atlas/tree/802
https://www.bugwood.org/
https://www.bugwood.org/
https://www.bugwood.org/
https://www.bugwood.org/
https://www.bugwood.org/
https://www.bugwood.org/
https://www.fs.usda.gov/
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2. Phylogeny and Distribution

Oaks (Quercus L., Fagaceae) are a large global genus of woody plants that dominate
northern temperate deciduous forests [28]. Recent phylogenic divisions of the genus
based on morphology and molecular genetics data divide the genus Quercus into two
subgenera: subgenus Cerris, comprised of the three sections Cyclobalanopsis, Cerris, and
Ilex; and subgenus Quercus, comprised of the five sections: Lobatae (red oaks), Protobalanus
(intermediate oaks), Ponticae (California oaks), Virentes (live oaks), and Quercus (white
oaks) [29,30] (Figure 2A). Quercus sect. Quercus includes 146 species distributed throughout
North America, Central America, Western Eurasia, East Asia, and North Africa [31], of
which 112 are found in North America (45 in the US and 67 in Mexico) [32,33]. Recent
studies using genome sequencing technologies revealed that American oaks arose in North
America and spread to the south, similar to pines [32–34] (Figure 2B). This dispersal
pattern resulted in four major lineages. Species in the red and white oak sections radiated
sympatrically and broadly across the north. Live oak and golden cup oak section species
showed a much higher rate of parallel diversification, potentially driven by the more recent
adaptation to milder niches in Mexico, based on climate and regional moisture gradients,
relative to long-term diversifications [32,33] (Figure 2A).

Figure 2. Phylogeny and speciation of clades in North American Oaks. (A) Phylogenetic tree of
Quercus, focusing on species within the North American clade, from maximum likelihood analysis of
RADseq data [31]; (B) Suggested migration routes from a common refugia pattern that can account
for the sympatric parallel adaptive radiation of the four oak clades in North America [32,33].

North America has the greatest number of oak species (~240), encompassing the red,
white, and intermediate sections of species and ranging from the east to west coast, from
southern Canada through Mexico, and beyond to the Andes of Columbia [35]. Oaks popu-
late a moisture gradient of environments, from the dry mesic conditions of the southwestern
United States and Mexico, to the wet conditions in the southern limits of the northern
boreal forest in northeastern US and southeastern Canada [35–38].

Quercus alba is one of the most widely distributed tree species in North America and
grows throughout much of the eastern United States. Its historical distribution ranged from
Maine to northern Florida, north through southern Ontario and Quebec, and west to Iowa,
Kansas, Oklahoma, and Minnesota (Figure 1B) [37,39]. It is a relatively common as well as
wide-spread species, but its abundance and ecological importance vary greatly with habitat
factors across its range [2,32,40]. In addition to historical trends, recent declines in Q. alba
oak populations within eastern forests from overharvesting, high grading, inconsistent
regeneration, and poor regeneration are raising concerns [8,41] (Figure 1C). In addition, the
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range, abundance, and ecological importance of Q. alba is expected to shift as the climate
changes [42] (Figure 1C,D).

3. White Oak Regeneration and Recruitment

A prominent factor affecting the eastern oak resources has been the ecological legacy
of change in human disturbance patterns on the landscape. Prior to European settlement,
the region’s oak forests were maintained through periodic disturbances which included
the use of fire by Native Americans [43,44]. The nature and intensity of post-European
settlement disturbance combined with factors such as the demise of the America chestnut
increased the prominence of oak on the landscape [44–46]. Since the mid-20th century, fire
has been largely removed as a landscape-level disturbance [43], with the intensity and
spatial magnitude of other human disturbance on the region’s forests greatly increasing.

The demographic and distribution patterns of the eastern oak resources reflect the histor-
ical timeline of human use and successional responses of forest communities (Figure 1C,D).
The contemporary age structure of the region’s oak forests is skewed toward older age
classes, with 60 to 70% of forests today between the ages of 40 and 100 years old and only
5 to 10% of oak forests being less than 10 years old [47,48] (Figure 1E,F). Near-term oak
supplies are stable due to the large standing volumes in largely even-aged forests whose
origin was facilitated by late 19th and early 20th century land-use and disturbance patterns.
However, widespread recruitment failures throughout its geographic range have been
reported by forest managers for many years [49]. Oaks in the canopy are being replaced
by non-oak species [50,51] from forest successional dynamics that are influenced by the
high levels of deer herbivory and a reduced frequency of low intensity fire which results
in increased competition for light, water, and nutrients [44,50,52–56]. As overstory oaks
are eliminated through natural mortality and harvesting, the inadequate recruitment of
competitive Q. alba seedlings results in stand compositional shifts toward more shade-
tolerant species such as red maple (Acer rubrum L.) and American beech (Fagus grandifolia
Ehrh.) [37,57,58]. In these shaded conditions, the relatively poor competitiveness of Q. alba
is due to slow above-ground juvenile growth and a preferential allocation of resources to
the root system, combined with intermediate shade tolerance [34,57,59]. In recognition
of the lack of Q. alba recruitment and large-scale species compositional shifts, efforts to
conserve and restore oak ecosystems have been increasing (e.g., [51,60,61]). In addition to a
variety of management approaches that are being tested and implemented (e.g., [52,62–65]),
organizations such as the White Oak Initiative (www.whiteoakinitiative.org) have been
created in order to support the sustainable growth of the Q. alba resources [66].

4. Climate Change and Quercus alba Biology: Direct Impacts

As sessile organisms, temperate trees have developmental and reproductive systems
that are optimized for the annual cycle of changing environmental conditions. From studies
of different plant species, these systems are sensitive to light/dark cycling, day/night tem-
peratures, water availability, or a combination of the three. For a tree species in a particular
climate zone, there are several key physiological systems adapted to the cyclic changing
environmental conditions. These include but are not limited to: (1) tree water maintenance
and transport systems; (2) juvenility and reproductive systems; (3) meristematic growth
and development systems; and (4) abiotic and biotic cellular stress response systems. All
these systems are composed of phenotypic traits that are critical for maintaining the species
in its current environment. For Q. alba, as discussed above, of great interest are traits that
maintain regeneration (flowering, pollination, seed development, and seedling survival
and growth), enhance recruitment (drought and shade tolerance and sapling survival and
growth) (Figure 1H), and tolerate or resist biotic (pathogens and pests) (Figure 1I–P) and
abiotic stress.

Adaptation can be a long-term process depending on the phenotypic plasticity and
genetic basis for any trait, especially for species with long generation times. Therefore,
rapid climate change poses a significant threat to the continued presence of such species

www.whiteoakinitiative.org
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in their current environment. To predict the future success and distribution of oaks in
the changing temperate forest zones with the objective of potentially assisting its future
success, we must know: (1) Which adaptive traits were key to the oaks’ success in their
extant locations? (2) What is the degree and mechanism of phenotypic plasticity and/or
genetic variation for these traits required by individuals or populations for adaptation?
(3) What genes or molecular networks control the climate critical traits? (4) Which of
these traits should be prioritized as targets for oak management, reforestation, and genetic
improvement efforts in the future? The following are examples of oak traits likely to be
important in their adaptive responses to rapid climate change.

4.1. Water Relations: Control of Root Growth in Oaks

Predicting the future success and distribution of Q. alba in North America relies heavily
on our understanding of the physiology and genetics underlying this species’ ability to
adapt to the direct impacts of increased environmental warming. Although we have
very limited knowledge of this in Q. alba, significant studies of drought tolerance and
related traits, such as water-use efficiency in other models for annual and woody plant
species [67–69], have provided research targets and foundational studies for deployment
in the research on Q. alba. From the genetic perspective, several studies have revealed the
sources of variation and candidate genes underlying drought tolerance and adaptation
in European white oaks [70–74]. Unlike four other northeastern oaks studied by Reed
and Kaye [75], Q. alba is responsive to rich soil composition and higher moisture levels,
associated shale vs. sand bedrock. However, data and publications on the performance of
Q. alba on different types of soil are scarce (for more information on site recommendations
for Q. alba, refer to [76]). As Q. alba have a taproot architecture (Figure 1Q), presumably to
enable deep soil water acquisition under drought conditions, studies focusing on the control
of the development of this root form in woody plant species are particularly relevant.

Oaks exhibit both shallow and deep rooting systems, allowing them to access water
at multiple depths in the soil profile during the annual cycles of rain and drought. They
successfully compete with species possessing rooting systems more specialized for deep soil
(e.g., maples and pines) [36]. The rooting architecture of oaks in concert with stem vascular
organization (ring porous) and leaf structural features (thickness, stomatal size) enable
oaks to exploit niches across regional and climatic zones greatly differing in hydrologic
conditions [36,37], from mesic to xeric. Equally important, oaks survive and prosper in a
broad range of different edaphic conditions and drought stress, due to the structural features
of oak vascular tissues such as tyloses (vascular structures arising post-differentiation that
limit the diffusion of liquids through the wood sample [77], deep rooting, and the ability
to form and sustain mycorrhizal associations with a high diversity of fungi; for review,
see [78]). Quercus species distributions provide excellent examples of how these anatomical
traits and their associated physiological systems have enabled the species to become
dominant in North American forests across a large range of environments (for a review of
physiological characteristics, see [32,36,37,40,79]).

A recent review by Kościelniak et al. [80] lays out the current status of our understand-
ing of taproot development and its control while highlighting several questions that need
future study: “(1) how does organization and cellular signaling enable a taproot to grow
and penetrate deep soil layers, (2) what internal factors enable taproots to grow rapidly and
penetrate deep soil layers (Figure 1Q), and (3) how does soil water limitation induce the
vertical growth of taproots (Figure 1Q). Aside from the unanswered questions above, how
much does the genetic control of cell division explain the continued maintenance of root
growth and apical dominance of taproot meristems?” As outlined by Kościelniak et al. [80],
emerging concepts in the control of root growth come from studies of models such as
Arabidopsis and other model tree species (e.g., Populus species). The control of root growth
and architecture is related to phytohormone balance and pathway regulation, plant growth
and development transcription factors, microRNAs, and signal transduction pathways.
Additionally, emerging studies indicate that epigenetic factors likely also play a key role
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in the adaptive responses of trees to environmental change (for review, see [81,82]). In the
case of epigenetics, work in Populus species on drought stress transcriptomic responses of
clonally propagated material planted in differing geographic regions demonstrates specific
DNA methylation patterning correlated with provenance and drought stress transcriptomic
responses [82]. These types of studies linking local adaptation to epigenetic marks in
reference to oak adaptation could unlock potential plasticity targets for the improvement
of the species.

4.2. Reproduction

In European white oaks, Caignard et al. [83] presented evidence that increasing tem-
peratures associated with climate change are responsible for an observed increased seed
production in environments that are historically cooler and currently not impacted by water
deficit. This contrasts to studies of other oak species in regions experiencing both tempera-
ture increase and water deficit, whereby tree growth and survival were negatively impacted
by a warming climate [84]. Effects on other aspects of oak reproduction (e.g., masting) and
the effects of other environmental changes (e.g., drought) need to be established before
any meaningful modelling about the future habitat of deciduous oaks in the temperate
forests. Current predictions suggest that oaks will expand northward with changing climate
zones and retreat in warmer drought-prone areas. A recent limited provenance study of
Q. alba performance suggests that white oaks from northern temperate locations, when
challenged with more southerly climate conditions, do not perform as well as trees from
more southern provenances, suggesting that there may be a fitness cost for Q. alba as the
climate zones shift further northward [85]. Research into the fundamental genetics and
physiology of oak species regeneration in response to environmental conditions are needed
to predict outcomes and produce strategies in order to promote the continued presence
and establishment of white oaks.

4.3. Pollination

Long-distance pollination is a well-established feature of the maintenance of genetic
diversity within oak stands [86] (for review, see [7]). Multiple studies of isolated stands
have revealed that long-distance pollen dispersal is evident and leads to the conclusion
that the fragmentation of oak populations due to repurposed land use may not necessarily
lead to local losses in genetic diversity [87–98]. However, other barriers may lead to loss
of diversity or inbreeding, such as genetically determined fertilization incompatibilities
and/or timing of flowering, which may play a significant role in determining the genetic
architecture of oak forest stands, despite pollen dispersal [86]. Thus, climate change could
lead to local maladaptation, due to incompatible phenology, making it difficult to predict
future oak sustainability for species such as Q. alba, for which we know little regarding
these traits and at what spatial scales these traits have adapted.

4.4. Flowering

Oaks are monoecious, with staminate and pistillate flowers on the same tree. Little is
known of the physiology or genetics of the regulation of flowering in oaks. Contrastingly,
there is a substantial body of growing knowledge about the molecular basis of flowering
control in some model forest and fruit tree species (for recent review, see [99]). Both floral
and leaf bud dormancy are initiated and controlled by key environmental factors such
as light (day length), cold (chilling requirement), and stress (abiotic: heat, cold, osmotic;
biotic: pathogens and pests). All of these will likely be significantly impacted by climate
change. The establishment, maintenance, and release of dormancy are regulated by gene
networks that respond to these different environmental cues, depending on the individual
adaptation of a particular species or population. For example, Prunus fruit trees, such as
peach (P. persica), establish, maintain, and release bud dormancy via pathways that are
sensitive to temperature [100], while in Populus species, these steps are regulated more
by day length [101] (reviewed by [102,103]). In general, these networks involve light
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response networks, temperature response networks, hormone pathways, cell cycle control,
epigenetics, and others [99,100]. Genomics-based research on dormancy in the European
pedunculate oak (Q. robur) has highlighted some of the gene networks evident in these
previous fruit and forest tree studies, suggesting that oaks may utilize similar genetic
control mechanisms as other tree species [104]. However, it is difficult to predict and
improve the performance of Q. alba in terms of flowering traits (Figure 1S) without first
obtaining substantial knowledge of the physiological, ecological, and genetic systems that
underpin these traits in this species.

4.5. Masting

Masting is a population scale synchronous flowering event observed in certain tree
species. However, as pointed out in a detailed review of the genetic control of masting [105],
the manifestation of this event is dependent on the diversity in the flowering control mecha-
nism among individual members of the species (diversity) and the coordinated response of
these individuals within a population and year (synchrony). A resource-driven pollen limi-
tation hypothesis was directly supported for two European oaks species, Q. petrea and Q.
robur [106]. From studies of other perennial and annual plant species, the physiological and
genetic control of masting could likely involve molecular networks controlling flowering
and dormancy release [99,105,107]; abiotic and biotic stress response [108]; seed maturation,
meristem growth, and developmental control [80,109]; root/shoot communication and sink-
source physiology [110,111]; the epigenetic regulation of gene activity [112], and potentially
others. Although not possible in the past, access to gene information in oaks is rapidly
increasing (see Emerging tools and resources for oak biology and improvement, below)
and the stage is ideally set to make significant progress in understanding the physiological
and genetic underpinnings of this important climate critical trait in Q. alba (Figure 1R,T,U).

4.6. Seed Germination

In oaks, there are contrasting climate-related seedling germination strategies. In
general, white oaks do not exhibit a stratification requirement and germinate in the fall,
concomitant with acorn drop (Figure 1U), while red oak acorns overwinter and germinate
the following spring during more favorable growing temperatures [113,114]. In some
red oaks, this stratification requirement is not absolute as acorns will germinate without
prior cold treatment (e.g., Quercus pagoda Raf. [115]); however, the germination efficiency
increases substantially with cold treatment [113,115], leading to the conclusion that red oaks
exhibit a physiological dormancy, rather than true dormancy (endodormancy) which is
associated with cell cycle arrest and chill requirement for dormancy release. Unfortunately,
we know very little about the genetics and physiology of this climate critical trait in oaks in
contrast to what is known regarding annual crop and model species plants. In recent years,
through studies of annual crop models, Arabidopsis, and a few woody perennial species
(e.g., peach, poplar, and grape), major advances have been made in our understanding
of the genetic and physiological underpinnings of seed and bud dormancy in plants. For
reviews on seed germination, see [116], and for bud dormancy, [99]. However, much of our
knowledge of seed dormancy and germination control comes from studies of plants with
orthodox (annual) or typical seeds, such as Arabidopsis, whereby seeds mature concomitant
with desiccation. This is not the case for recalcitrant or intermediate seed species, including
oaks or other nut-producing species like chestnut, for which the desiccation of seeds after
maturity significantly negatively impacts seed viability and germination [113,117].

The relationship between the chemistry, germination timing, and dispersal of acorns
has been an area of interest for quite some time. An early study on germination in oaks [113]
suggested that the fat content of acorns may be related to the germination control in red
oak acorns and not the tannin content of the seed. Subsequent reports on northern red
oak (Quercus rubra) and Q. alba germination and dispersal over the following decades
were synthesized into a Differential Dispersal Hypothesis (DDH) [118], based on the
characteristics of acorns reported to affect germination, feeding, and dispersal by animals.
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The DDH summarized the primary features of Q. alba acorns affecting dispersal, such as low
tannin and low-fat content, and early germination, predisposing Q. alba acorns to immediate
and/or selective consumption (relative to northern red oak) in autumn, or embryo excision
by squirrels prior to cashing. In northern red oak, acorns traits affecting dispersal included
high tannin and high fat content, with delayed germination, associated with the selective
caching of northern red oak acorns (relative to Q. alba) for later consumption during winter.
Overall, the DDH predicted that northern red oak acorns would be selectively scatter-
hoarded by animals across greater dispersal distances than Q. alba, especially smaller-
seeded acorns, which jays could disperse over very long distances, primarily into open
areas suitable for oak regeneration. More recently, studies in sawtooth white oak (Q. aliena
var. accuserata) suggested that the acorn pericarp and cotyledons contain substances that
inhibit germination, and that the removal of the pericarp and a portion of the cotyledon can
increase germination efficiency [119]. The germination morphology of Q. alba seeds (the
plumule separated from the cotyledons) (Figure 1U,V) promotes seedling establishment in
case of pruning by rodents [120]. The comparison of red and white oak species acorns by
maturity and germination demonstrates that transitions from maturation to germination
show changes in cellular location and the metabolism of lipids, insoluble and soluble
carbohydrates, and proteins (reviewed by [121]). Many features of the interaction of
the genotype, phylogeny, ecotype, and physiology of seed germination remain to be
clarified. For a more comprehensive history and detailed overview of ecology and biology
research findings for oak seed dispersal, see [122]. Recent phylogenomic analyses have also
highlighted the importance of seed structure and germination in the radiation of species, as
well as introgression, within the Fagaceae family [123].

4.7. Seedling Growth Control

In oaks, some studies examine the effect of seed size on seed germination and seedling
survival (for review see [124]). Among species, the question of seed size versus seed abun-
dance for optimal species survival seems not to be an issue of a simple tradeoff but may also
incorporate the longevity of the large-seeded species and the consequences of continued
reproduction over extended time periods. Among and within species studies suggest
that the larger seeds may have a significant advantage in germination and subsequent
seedling recruitment [113,125–128]. Llanderal-Mendoza et al. [126] suggest that decreases
in acorn size along latitudinal climatic differences in Q. rugosa in Mexico effect successful
recruitment whereby the northward expansion of the species range has led to smaller-sized
acorns with a reduction in germination and recruitment. Conclusions from this work were
supported and further extended to other Quercus species in Mexico [127], whereby they
demonstrated that, in a common garden experiment for seven red oak species and three
white oak species, acorn fresh weight was positively correlated with germination efficiency,
and acorn dry matter was driving this correlation. Furthermore, they demonstrated that
nutritional storage compounds and not water content were responsible for this result. This
size effect was consistent when compared between red and white oak species, as well as
within red and white oak species. Finally, a recent study [128] demonstrated that large seed
size was positively correlated with seed viability in Q. robur acorns collected from multiple
sites in Croatia over a ten-year period.

Larger seedlings can improve the competitive status of oak regeneration relative to
average-sized seedlings [34,52,129]. Extra-large seedlings [130–132] can be planted to enrich
advanced natural regeneration and may be especially critical when harvesting occurs in
years of poor mast production, which is a regular occurrence with Q. alba [133]. While
these seedling size considerations are important, the genetic potential of the seedlings is
also important for successful regeneration. Thus, the development of high-quality, well-
performing Q. alba seedlings for artificial regeneration should be achievable through a
combination of tree genetic improvement and good nursery and planting practices [132].

Unfortunately, it is difficult to predict how results from orthodox annual seed plants
will translate to oaks and other nut-producing trees. However, we now have the genomic
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resources and materials in key oak species to bridge this knowledge gap. As stated
in [134], “hardwood seed production, seed harvest, and seedling production must be
approached as a coordinated system where all aspects from flower initiation to seed
development, harvest, and storage to seedling production, transplanting and establishment
are integrated. The best approach to insure predictable amounts of high-quality seeds
and seedlings is to establish and manage seed orchards and use container production”.
However, sustained regenerative success in the forest in the long term will rely on an
understanding of the genetic and environmental interplay on climate-relevant traits that
underpin seed production, germination, and seedling establishment (Figure 1H,R–V). The
contrasting strategies of flowering, seed maturation, seed germination, and seedling growth
control between sympatric white and red oaks species is ideal for delimiting the genetic
architecture of these climate-relevant traits and predicting the impact of climate change
on their manifestation. This can lead to optimized management and tree improvement
strategies incorporating genetic and physiological knowledge-based inputs.

5. Climate Change and Quercus alba Biology: Indirect Impacts

While the rapidly changing climate can directly impact tree growth and reproduction,
it also indirectly impacts tree survival by altering the distributions of pests and pathogens,
potentially leading to increased pest and pathogen pressure on native tree populations (for
a review, see [135–137]). Oaks are susceptible to native and non-native pathogens (Table 1
and Figure 1I–P). Alone, many of these pests and pathogens are not necessarily lethal to the
host; however, in concert with the plant stress imposed by a rapidly changing climate, these
pathogens can significantly contribute to oak decline [138]. Therefore, the introduction of
novel non-native pathogens or the climate-driven expansion of native pathogen ranges can
be extremely detrimental to previously unexposed forest trees (for examples, see [139]).
A case in point from a related Fagaceae species is the spread and subsequent impact
on the American Chestnut of Phytophthora cinnamomi post its introduction to the eastern
US [140,141]. This oomycete pathogen is hosted by over 5000 different plant species (for a
review, see [142]) (see Figure 1I for Phytophthora root and crown rots in Q. alba) and is a major
destructive pathogen of members of the Fagaceae. Its introduction into the southeastern US
has created a major complication to the planned introduction of chestnut blight-resistant
American chestnut from chestnut restoration programs. In oaks, its northward expansion
with global warming is already impacting oaks and other forest trees as part of the oak
decline syndrome in North America and Europe [143–145]. Another Phytophthora species,
P. ramorum, is responsible for sudden oak death on California oaks (primarily Quercus
agrifolia, coast live oak, in the red oak subgenus Erythrobalanus) and the related tanoak
species Notholithocarpus densiflorus in the Fagaceae family, as well as other plant species in
the western US. Its impact is predicted to mount with increased microclimate variability
that is associated with climate change [146–148].

Many different diseases affect white oaks, including canker rots [149,150], oak an-
thracnose [151,152], leaf blisters [153], stem canker [154], oak wilt [155], oak decline [156],
and stem decay [150] (Figure 1I–P for Q. alba images). Of all these diseases, oak decline
and oak wilt are the two most devastating, with major impacts on oak survival and acorn
production, resulting in altered forest structure and composition over time. Several ad-
ditional diseases and insects that are rarely fatal can also impact acorn production and
are expected to increase as climate change advances [157]. These relevant pathogens and
pests are tabulated below (Table 1). For a more comprehensive discussion of each, see the
Supplementary Materials (File S1) on diseases and pests of Q. alba.
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Table 1. Pests and pathogens of Quercus alba.

Disease Pathogen/Pest Relevant Classification Key Features Q. alba Resistance? References

Oak wilt
Bretziella fagacearum (Bretz)

(Microascales: Certocystidaceae)
(formerly Ceratocystis fagacearum)

Ascomycete fungus
Necrotrophic

Vascular wilt, vectored through root
grafts and sap-feeding beetles Scolytidae

and Nitidulidae.

Somewhat resistant, exhibiting
slower fungal growth. [158–174]

Oak decline
Agrilus bilineatus Weber and Armillaria

mellea [Vahl. Ex Fr.] and
Phytophthora cinnamomi

Coleptylebran beetle and oomycete
hemibiotroph

interaction.

Caused by the interaction between
severely stressed trees, secondary pests,

such as
the two-lined chestnut borer, and root

diseases like armillaria root rot and
ink disease.

Less susceptible than other North
American oak species and less severe

in young (less than 70 years)
and heterogenous stands.

[175–181]

Hypoxylon cankers Hypoxylon atropunctatum (Schw. ex Fr.)
Cke

Ascomycete fungus
Necrotrophic

Less pathogenic fungal species that
frequently accompanies dieback.

Live healthy unstressed trees less
susceptible. [179]

Root and crown rot Phytophthora cinnamomi Oomycete hemibiotrophic Extirpated American chestnut and a
component of oak decline.

White oaks less effected by this
pathogen? [140–148,157]

Anthracnose

Dendrostoma leiphaemia Senan. and K.D.
Hyde (formerly Discula quercina (Westend.)

Arx Anamorph of Ascomycete
Apiognomonia quercina.

Ascomycete fungus
hemibiotrophic

One of the most damaging leaf and twig
diseases, impacting reproduction and

masting; widespread across
North America.

Leaves are less susceptible as they
age due to thicker

protective cuticle; large range of the
pathogen across

a variety of climates suggests
adaptation to distinct climates

[151,155,182]

Twig, branch
and rots cankers

Botryosphaeria spp. (including B. rhodina
[Berk. and Curt.] von Arx, B. dothidea

[Moug. ex Fr.] Ces. and de Not., B. obtusa
[Schw.] Shoemaker, and B. quercum [Sch.:

Fr.] Saccardo) and Botryodiplodia gallae
(Schw.) Petrak and Sydow

Ascomycete fungus
necrotrophic/hemi

biotrophic?
Can play role in oak decline syndrome. Most susceptible under drought or

cold stress. [183]

Spongy moth
(formally gypsy moth) Lymantia dispar Lepidopteran insect

A significant insect pest of Q. alba forests,
usually in low numbers but occasionally

surges surging to severe outbreaks.

Q. alba is preferred over the hundreds
of tree species spongy moth

caterpillars feed on.
[184–192]

Acorn weevil Curculio and Conotrachelus spp. Coleopteran insect
The major oak seed predator and a factor
in the reduced regeneration in the eastern

United States.
Unknown. [193–196]
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6. Emerging Tools and Resources for White Oak Biology Research and
Genetic Improvement
6.1. Genomics/Genetics

The high diversity in adaptive traits and genes and the rapidly growing genomic
resources for oaks make them a model clade for the integration of population, evolutionary,
and ecological research, such as association mapping (Genome-wide Association Analyses,
GWAS), landscape genetics, population epigenomics, paleogenomics, and phylogenomics
studies. High density genetic linkage maps and Quantitative Trait Locus (QTL) studies are
important tools for the detection of chromosomal regions associated with adaptive trait
variation for the validation of causal associations in GWAS and of outlier loci between
ecologically contrasting populations.

Due to the great ecological importance of oaks as keystone tree species across many
northern hemisphere forest ecosystems, genomic resources and their applications in re-
search have been increasing rapidly (as recently reviewed by [197,198]). This is particularly
true for the white oak section, Quercus (sometimes referred to as subgenus Leucobalanus), for
which sequence-based genetic markers, high density genetic linkage maps, QTLs, transcrip-
tome resources, and whole genome assemblies are available for multiple species. Recently,
the development of genomic, transcriptomic, and experimental resources for the genus
Quercus and their applications of these resources to population genomic analyses were
reviewed [199]. Here, we describe the genomics and genetics tools and resources avail-
able for white oaks. Table S1 (Supplementary Materials) summarizes the state-of-the-art
genomic/genetic resources for white oak species.

Oak Genetic Maps and Genomes

Before whole genome sequencing efforts became commonplace, studies of oak genomes
focused on determining the total nuclear content, the number of chromosomes, and the
ploidy. The Plant DNA C-value database [200] contains details for DNA content studies
across 29 oak species, which found a relatively small genome size of 0.5 to 1.22 C(pg),
equivalent to a haploid genome content of 489 Mb to 1193 Mb [201–207]. Chromosome
characterization in 22 of those species found 12 haploid chromosomes in a diploid state,
unusually consistent for a species-rich genus [202–207].

Despite the laborious and expensive process of oak breeding, which must contend
with long generation times, huge space requirements and irregular masting, pedigreed
populations have been developed and leveraged in order to generate several genetic maps
using a variety of marker types. The two largest and most dense are the composite genetic
map for Q. robur and Q. petraea with 4261 SNP (Single Nucleotide Polymorphism) markers
across 742 cM [208] and the framework genetic map for Q. rubra with 849 SNP markers
across 652 cM [209]. The composite genetic map for Q. robur and Q. petraea was assembled
from five full-sib mapping families from controlled intra- and interspecific crosses. The
families were previously validated using multi-allelic microsatellite markers [210,211]. A
high-density composite map could be assembled due to the high collinearity between the
maps for the two species [208]. By contrast, the Q. rubra mapping population and genetic
linkage map were developed using the paternity exclusion approach, in which full-sibs
are identified with DNA markers from open-pollinated progeny families from a pair of
neighboring trees.

The Q. robur and Q. petraea high-density composite map has been used to identify
genomic regions associated with the adaptive traits and signatures of selection across
species [212]. The evaluation of markers showing segregation distortion suggested that
male gametophytic selection may be serving as a pre-zygotic reproductive barrier, at least
partially, between the species [199]. The high collinearity between Q. petraea and Q. robur
crosses [208] and Q. rubra (Northern red oak) genetic maps [209] enables the comparative
mapping of adaptive traits and the identification of conserved genomic regions important
in the environmental adaptation between oak sub-sections. Lower density genetic maps
and full-sib families have also been generated for QTL analyses in European white oaks
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for a variety of traits including late flushing [213,214], bud burst timing [213,215], height
growth [213], leaf morphology [213,216], water use efficiency [217], stomatal density [212],
response to waterlogging [218], seed production and seed mass [219], and branching
traits [220]. Applications for genetic maps in oak species have been more extensively
reviewed [199]. The colocation of QTL for the timing of vegetative bud burst [221] between
oak and chestnut (Castanea sativa Mill.) indicates that the genetic architecture of important
adaptive traits may be conserved, even at the family level in the Fagaceae.

The high-density Q. robur and Q. petraea composite gene-based linkage map was also
used to anchor and order scaffolds in the Q. robur genome assembly [222]. Subsequently,
the high-density linkage map [208] was used to determine the number and location of
quantitative trait loci (QTLs) underlying variation in resistance to Erysiphe alphitoides and P.
cinnamomi infections along with QTLs for phenology and height growth, followed by the
identification of candidate genes by reference to the genome assembly [223]. Likewise, the
Q. rubra genetic linkage map was used to validate Hi-C chromosome-level scaffolding and
to choose the orientation of the chromosomes in the recently reported reference genome
assembly for Q. rubra [224].

Recent technological advances have simultaneously accelerated the production and
the quality of sequenced reference genomes. The earliest oak genomes emerged as short
read assemblies at the scaffold level for Q. robur [225], Q. lobata [226], and Q. suber [227].
Improvements to the Q. robur genome resulted in the first chromosome scale genome
for oaks [222]. Currently, eleven Quercus species have high-quality, chromosome scale
genomes, most of which are from the past year (Table 2). Two of these, Q. robur [228] and
Q. glauca [229], provide haplotype resolved assemblies, i.e., a complete genomic sequence
for both chromosomes, assembled independently from a diploid individual. Neither has a
peer-reviewed citation but both are in public repositories. The early estimates of genome
size, chromosome number, and ploidy have been borne out by the sequenced genomes
to date, which range in size from 733 Mb to 926 Mb. Furthermore, no whole genome
duplication events have been found since the ancient γ hexaploidization event shared by
core eudicots [222,226,230–232].

The comparative analysis of the Quercus genomes has revealed some strongly con-
served genome patterns. Oak species analyzed thus far have high genome heterozygosity,
ranging from 0.5% in Q. lobata to 2.15% in Q. variabilis [222,230–233]. Despite this nu-
cleotide level heterozygosity within species, the overall chromosome scale structure is
highly conserved between species with one-to-one correspondence of the 12 chromosomes
and no large rearrangements that would block hybridization. In contrast, large gene family
expansions and contractions are still occurring through prevalent genome-wide tandem
duplication blocks [222,230–233]. Plomion et al. [222] and Sork et al. [233] provided an in-
depth analysis of this phenomenon and found that these blocks may have anywhere from
a few to dozens of genes, and preferentially contain gene families that are characteristic of
disease resistance, especially the NBS-type and RLK-type. Plomion et al. [222] estimated
that Q. robur had twice the proportion of R genes to total genes in comparison to other
plant species with sequenced genomes. This led to the hypothesis that R gene expansion
contributes to the long lifespan and broad niche occupation of oaks in general [222,233].
Complicating this hypothesis, the R gene complement was found to be greatly reduced in Q.
mongolica, with one third to one half as many genes in the major R gene families (NBS-type,
RLP-type, and RLK-type) as in Q. lobata and Q. robur. Further clade-wide research in the
R gene family expansion and contraction would be intriguing, particularly if assessed in
terms of oak radiation, speciation, and adaptation.
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Table 2. Currently available genomes for Quercus species.

Species Subgenus Section Year Genome Size (Mb) Contig N50 (Mb) Protein Coding Genes Public Availability References

Q. rubra Quercus Lobatae 2022 733 1.9 33,333 Phytozome v2.1 [224]

Q. lobata Quercus Quercus 2022 844 1 41,714 NCBI v3.2, accession GCA_001633185.5 [226,233]

Q. robur Quercus Quercus 2022 789 (H1); 762 (H2) 16 (H1); 1.6 (H2) 41,871
NCBI dhQueRobu3.1, accessions

GCF_932294415.1 for main assembly (H1) and
GCA_932294425.1 for alternate assembly (H2)

[228]

Q. glauca Cerris Cyclobalanopsis 2022 903 (NCBI); 865 (Hap1
FS); 896 (Hap2 FS)

7.6 (NCBI); 7.9
(Hap 1 FS); 7.3

(Hap 2 FS)
37,460 (H1); 38,312 (H2)

Genome haplotype 1 (Hap1) assembly only
available at NCBI Accession GCA_023736055.1.
Assembly and annotation available at figshare

(FS; https://figshare.com/articles/dataset/
High-quality_haplotype-resolved_genome_

assemblies_of_ring-cup_oak/20448339/1
(accessed on 28 November 2023)). There is

discrepancy between the Hap1 in NCBI and
FigShare; NCBI appears to have more unplaced

scaffolds available.

[229]

Q. gilva Cerris Cyclobalanopsis 2022 890 28.3 36,442

Genome from NCBI GCA_023621385.1; gene
annotation from FigShare (https:

//doi.org/10.6084/m9.figshare.20411082.v3
(accessed on 28 November 2023))

[230]

Q. mongolica Quercus Quercus 2022 810 2.4 36,553

Genome from NCBI accession
GCA_011696235.1; annotation from figshare
(https://figshare.com/articles/dataset/A_

chromosome-scale_genome_assembly_of_the_
Mongolian_oak_Quercus_mongolica_/1188811

8/2 (accessed on 28 November 2023))

[231]

Q. variabilis Cerris Cerris 2022 796 26 32,466
China National GeneBank DataBase accession

CNP0003390. No gene sequences available,
annotation provided as gff3.

[232]

Q. dentata Quercus Quercus 2023 894 4.2 31,584

Genome from NCBI GCA_028216015.1, gene
annotation from FigShare https:

//doi.org/10.6084/m9.figshare.21624159.v1
(accessed on 28 November 2023). Genome and

annotation available from China National
GeneBank Database accession

GWHBRAD00000000

[234]

https://figshare.com/articles/dataset/High-quality_haplotype-resolved_genome_assemblies_of_ring-cup_oak/20448339/1
https://figshare.com/articles/dataset/High-quality_haplotype-resolved_genome_assemblies_of_ring-cup_oak/20448339/1
https://figshare.com/articles/dataset/High-quality_haplotype-resolved_genome_assemblies_of_ring-cup_oak/20448339/1
https://doi.org/10.6084/m9.figshare.20411082.v3
https://doi.org/10.6084/m9.figshare.20411082.v3
https://figshare.com/articles/dataset/A_chromosome-scale_genome_assembly_of_the_Mongolian_oak_Quercus_mongolica_/11888118/2
https://figshare.com/articles/dataset/A_chromosome-scale_genome_assembly_of_the_Mongolian_oak_Quercus_mongolica_/11888118/2
https://figshare.com/articles/dataset/A_chromosome-scale_genome_assembly_of_the_Mongolian_oak_Quercus_mongolica_/11888118/2
https://figshare.com/articles/dataset/A_chromosome-scale_genome_assembly_of_the_Mongolian_oak_Quercus_mongolica_/11888118/2
https://doi.org/10.6084/m9.figshare.21624159.v1
https://doi.org/10.6084/m9.figshare.21624159.v1
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Table 2. Cont.

Species Subgenus Section Year Genome Size (Mb) Contig N50 (Mb) Protein Coding Genes Public Availability References

Q. acutissima Cerris Cerris 2022 756 1.4 31,490 Genome Warehouse in National Genomics Data
Center accession GWHBGBO00000000 [235]

Q. ilex subsp. ballota Cerris Ilex 2023 842.2 3.3 39,443 Genome from NCBI GCA_032727855.1; no
annotation publicly available. [236]

Q. aquifolioides Cerris Ilex 2022 957 1.2 26,441

Genome from NCBI GCA_019022515.1, no
annotation available. Sequence data deposited

in the CNGB Sequence Archive (CNSA,
https://db.cngb.org/cnsa/) of China National

GeneBank DataBase (CNGBdb) repository,
accession number CNP0003530, CNP0002992

[237]

https://db.cngb.org/cnsa/
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As many of these papers emerged during 2022, almost all compare their genome
to the few earlier chromosome-scale assemblies, Q. robur and Q. lobata. The plethora of
oak genomes, with more to come, opens new avenues for broad comparative genomics
and evolution research across the entire clade. One potential difficulty for researchers is
finding and downloading genomes. The genomes we found are not available in any central
location; indeed, we had to visit five different online resources to find and download the
genome assemblies and annotations: NCBI Assembly (mirrored by ENA and DDBJ [238],
figshare [239], Phytozome [240], CNCB-NGDC Genome Warehouse (National Genomics
Data Center, China National Center for Bioinformation [241], and CNGBdb (China National
GeneBank DataBase [242]. Annotations were not available for three of the genomes, and
one had no gene sequences, only a gene structure file (gff3 format). This presents a major
challenge to researchers. There is no central repository to identify and download genomes,
and, further, there is no enforcement of shared file structure or file completeness. This
problem is not restricted to oaks or to plants in general; it is an international, clade agnostic
problem that must be addressed through community demand, unified and enforced sub-
mission requirements by funders and journals, data sharing between databases, and stable
funding for biocuration at community databases, such as TreeGenes [243], that host and
curate genomic resources.

Genomics research in oak is providing unprecedented new resolutions to studies of
evolution, adaptation, and speciation. Oaks are famously a “worst case scenario for the
biological species concept” [244], with many sympatric species maintaining species identity
while also continuing to hybridize, forming a syngameon [245]. Lazic et al. [197] offer a
comprehensive review of adaptive divergence research, highlighting the ongoing efforts to
characterize the genomic signatures of this seeming contradiction. Previous studies on red
oaks in North America and white oaks in both Europe and North America have reported
that, while sympatric oak species each have a unique, detectable genetic identity, gene-flow
occurs at relatively high rates (9–20%) between sympatric species pairs. In fact, it appears
that related oaks hybridize wherever species ranges overlap (e.g., [246–249]), resulting in
strong regional signals of introgression [250,251]. Hybrids are generally restricted to contact
zones between species where local distributions overlap, which permits species to remain
genetically and ecologically distinct [252,253]. Alleles may nevertheless introgress beyond
the margins of contemporary species overlaps [212,254], leading to interspecific gene
flow between species with different local adaptations. Furthermore, hybridization can be
detected even beyond closely related sympatric oak species, i.e., between oak phylogenetic
sections. Zhou et al. [230] detected significant gene flow among 41% of 12 species pairs
tested between sections Quercus (white oaks) and Ponticae (California oaks). Kremer and
Hipp [26] also found evidence of past introgression between Quercus and Ponticae sections,
and more broadly across the Fagaceae family. This evidence of gene flow and subsequent
genomic introgression suggests that it has contributed to adaptation in the past and may
be a key resource for future adaptation in the face of climate change. Gaining further
understanding of the adaptive divergence through hybridization and introgression could
be invaluable to addressing climate change. As species range shifts, new opportunities for
genome shuffling may be necessary for adaptation and long-term survival in new ecological
niches [199].

Mechanisms underlying the maintenance of the identity of species amid gene flow
within syngameons are also under investigation. In addition to pre-zygotic isolation
mechanisms [242,254–256], postzygotic isolation also plays a role in the maintenance of
species identity under most environmental conditions (e.g., [257,258]). Genome-wide
genetic patterns differentiating oak species with different local adaptations have been
detected as signatures of selection in the face of gene flow. Genome regions of high
interspecific differentiation, surrounded by regions with low differentiation, distributed
across nine of the twelve chromosomes, have been observed when Q. robur and Q. petraea
were compared via genome scanning [199,259–263]. Gailing et al. [199] pointed out that
such patterns have been predicted by models of early stages of ecological speciation
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amid gene flow and strong divergent selection [262–264], as is the case for the interfertile
species Q. robur and Q. petraea. Furthermore, Gailing et al. [199] noted that levels of
adaptive trait and gene introgression may be related to the differences in adaptations to
environmental conditions, such as drought adaptation between the red oak species Q. rubra
and Q. ellipsoidalis [248,265].

Considering the extensive work in genomics of white oak species presented in Table
S1, and the sequencing efforts shown in Table 1, surprisingly little has been reported for
Q. alba, arguably the most important white oak species of eastern North American forests.
To address the paucity of genomics research in Q. alba, recent private/public partnerships
(White Oak Genomics Working group, UKY; White Oak Genetics Improvement Initiative,
UKY) are focusing on building Q. alba genetics/genomics research infrastructure, integrated
with a Q. alba breeding and improvement program. This group has recently completed a
high-quality, haplotype resolved genome sequence for Q. alba that will underpin much of
the future white oak genetics/genomics and tree improvement research (Staton personal
communication).

6.2. Genetics and Tree Improvement

Traditionally, tree improvement programs are preceded by one or more provenance
trials established at common locations (i.e., common gardens), using seeds from multiple
known origins (i.e., provenances or seed sources). Forest tree populations (e.g., prove-
nances) adapt through natural selection, migration, and phenotypic plasticity in response to
environmental conditions [266–272], and these mechanisms can be assessed in provenance
trials planted at common locations. When such provenance tests include seed sources
and planting locations representing different geographic or ecological zones, information
can also be inferred regarding the performance and expected resilience of trees to future
climates [273–277]. For example, the measurement of the timing of bud flushing in common
garden experiments that includes sampling across latitudinal and elevational gradients
provides an ideal opportunity to investigate the potential impact of climate change on
the tested species [278]. Furthermore, such trials can also be designed in a nested prove-
nance/progeny test configuration which facilitates the evaluation and selection of parent
trees (backward selection) or high-performing offspring (forward selection) in order to
advance tree improvement.

Tree genetic improvement for long-rotation hardwoods, including the oaks, remains
less developed than that for shorter-rotation tree species [279], such as pines (Pinus) and
poplars (Populus). Savill and Kanowski [280] described tree improvement strategies for
European white oaks, and numerous studies have examined genetic variation patterns for
some of these species (e.g., [281,282]). Most Q. alba genetic research has also focused on pop-
ulation structure [268,283,284], speciation and taxonomy delineation, or the quantification
of variation for a variety of traits (e.g., [34,194,285–289]).

Quercus alba Tree Improvement

An assessment of early Q. alba tree improvement goals and activities in the US was
summarized by Steiner [9], along with the prediction that few would ultimately be impact-
ful without the deliberate steps to transfer genetic gains from seed orchards to operational
plantations. This prediction was later substantiated in a review of forest genetics and tree
improvement research in the US [289]. Provenance trials for Q. alba have been limited in
scope and number, however, they have included only partial coverage of the natural range
due to research objectives and practical limitations associated with the rarity of masting
(wide-spread seed production) and lack of seed dormancy. Two examples are known—both
sampling several provenances from multiple states [271,290,291], although representing
relatively local (sub-regional) areas. The studies showed minor variation at the provenance
level in the common garden plantings while demonstrating the potential for early selection
(<10 years) on height growth.
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The University of Tennessee Tree Improvement Program (http://treeimprovement.
utk.edu/), established in 1959, includes the development of Q. alba seed orchards based
on results from multiple progeny trials conducted at locations across Tennessee, US, some
of which have progressed through 2–3 generations [290,292,293]. Most recently, the White
Oak Genetics and Tree Improvement Program (WOGTIP) was initiated in 2019 in the
Department of Forestry and Natural Resources at the University of Kentucky, in partnership
with the USDA Forest Service, Southern Research Sation, in order to provide a sustainable
supply of high-quality Q. alba seeds and seedlings to support the conservation, restoration,
and management of Q. alba throughout the species range [294].

The WOGTIP is a collaborative project being conducted in three phases: (1) the
collection of acorns and scions on a range-wide basis; (2) progeny testing at multiple
sites across the range to identify parent trees that produce high-quality offspring; and
(3) the development of seed orchards for acorn production and seedling deployment. The
WOGTIP represents the only known effort to establish a range-wide provenance study of
Q. alba [294]. The seed and scion collection effort has been highly successful due to the
participation of volunteers from federal and state agencies, academic institutions, NGOs,
woodland owners, and citizen volunteers. To date (2023), seeds have been collected from
over 500 mother trees and a network of over 25 regional progeny tests have been planted.
The scions collected from the mother trees are being grafted to create a clone bank; this
will conserve genetic material for the establishment of seed orchards following parental
selection, based on progeny performance in the nursery and field tests (Figure 1S).

In addition to the tree improvement specific objectives, the WOGTIP range-wide
provenance test and regional progeny trials will provide research materials for the genetic
assessment of important climate relevant traits, including stem growth rate, stem dieback,
apical dominance, epicormic branching, crown architecture, spring and fall phenology,
early flowering, and viable seed yield. The design of the studies will allow for quantitative
genetic estimates of heritability, genetic correlations, and genotype–environment interac-
tion, as well as genotype–phenotype–environment association analyses that can be used to
develop seed source transfer tools for mitigating climate change. The provenance test and
progeny trials will also provide a rich source of materials for studies of hybridization and
introgression between Q. alba and other co-occurring white oaks across the range, including
chinkapin, swamp white, chestnut, and/or post oak species for which the trial seedling
leaf morphologies suggest are occurring in areas of the Q. alba range where other species
overlaps occur.

6.3. Biotechnologies (Propagation, Tissue Culture, Transgenics)
6.3.1. Oak Propagation

The ability to vegetatively propagate individual genotypes is critical for establishing
clonal seed orchards for tree improvement (Figure 1E) and for simplifying the interpreta-
tion of results from genetics, genomics, physiological, and other oak biology studies. In
addition to the propagation of oaks from somatic embryos, there are several reports on the
successful vegetative propagation of oak species using stem propagation from coppiced
trees (reviews: [295–297]), in which hedge orchards could be used for clonal propagation,
in addition to seed orchards (Figure 1E,S). Further development of rapid, inexpensive,
genotype-neutral stem propagation techniques for Q. alba and other oak species are essen-
tial to the basic study of climate critical trait biology and for oak improvement programs
and should be a priority for future research efforts with white oak.

6.3.2. Transgenic Oaks

Transgene technologies applied to forest trees have a dual purpose: (1) they enable
the testing of candidate genes for traits critical as breeding targets, and (2) they provide a
direct means to engineer traits in order to meet difficult-to-reach tree improvement goals,
such as resistance to an introduced, invasive pathogen or pest. In the case of oaks, there
have been several reports of success in the application of these technologies.

http://treeimprovement.utk.edu/
http://treeimprovement.utk.edu/
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Successful Agrobacterium tumefacians-mediated transformation has been demonstrated
in cork oak, Q. suber, by Alvarez et al. [298] and Sanchez et al. [299] with embryogenic
cultures, and also by Alvarez et al. [300] with embryogenic masses containing the bar
gene from Streptomyces hygroscopicus; similar results have been shown with Q. robur em-
bryogenic tissues by Vidal et al. [301]. Subsequently, Mallon et al. [302] demonstrated the
successful A. tumefacians-mediated transformation of Q. robur embryogenic tissue with a
chestnut thaumatin-like protein gene, CsTL1, that had been shown to confer resistance to
fungal pathogens in chestnuts [303]. In this report, they also demonstrated the subsequent
regeneration of transgenic plants expressing the transgene. Similarly, Cano et al. [304]
demonstrated the successful transformation and regeneration of Holm oak (Q. ilex) with
the same CsTL1 gene from chestnuts. More recently, Serrazina et al. [305] demonstrated
the successful A. tumefacians-mediated transformation of Q. ilex with the Ginkbilobin-2
homologous domain gene (Cast_Gnk2-like), which had previously been shown to exhibit
antifungal activity [306]. The in vitro analysis of the transgenic plants demonstrated some
resistance to the P. cinnamomi as judged by increased time post-inoculation to plant death
of transgenic plants when compared to controls.

6.3.3. Transgenic Quercus alba

Progress has been made in the application of in vitro techniques for the propagation of
Q. alba and other North American oaks which are notoriously difficult to propagate vegeta-
tively. This prompted investigations into in vitro propagation. Sources and developmental
stages of explant tissues were determined to be of primary importance in the successful
initiation of somatic embryogenesis (SE) cultures for trees, including Q. alba [307–309],
Merkle, pers. comm.). Highly productive Q. alba embryogenic cultures were obtained
from immature seed explants. Somatic embryos were produced from the cultures and
somatic seedlings were regenerated from them following a pre-germination cold treatment
and culturing on basal WPM with activated charcoal in a lighted incubator. The somatic
seedings continued growth following the transfer to ex vitro conditions (Figure 3; Merkle,
unpublished). The establishment of prolific shoot cultures from forced shoots of six-to-
seven-year-old trees was reported as an efficient means of micropropagation for Q. alba,
Q. bicolor, and Q. rubra, albeit genotype-dependent [309]. This led to success, as reported
by Corredoira et al. [310], in obtaining somatic embryogenesis and plant regeneration
from shoot apices and leaf explants of shoot cultures derived from Q. alba trees. SE rates
varied from 0 to 50%, depending on the explant source and genotype. These approaches
using shoot explants represented a break-through in providing true clonal propagation
of the donor genotype, thus avoiding genetic recombination at the seed embryo stage. It
is expected that Agrobacterium-mediated transformation systems based on binary plant
expression vectors and inducible gene constructs should be adaptable to Q. alba transfor-
mation, as successfully tested in chestnut [311], poplar [312], Arabidopsis [313], and other
systems. The AlcR/alcA system exhibits little or no basal expression in plants and permits
the rapid, reversible induction of transgene expression [312,314].
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6.4. Phenomics Field Scale Technologies for Oak Research

A critical need exists for determining the genomic/genetic underpinnings controlling
phenotypic traits that affect key life-cycle processes of the oak forest, including regeneration,
recruitment, and growth dynamics. Relying entirely on traditional common garden testing
for phenotyping will extend tree improvement timelines by several decades. A field and
forest-scale tree phenotyping platform would facilitate identifying and measuring key
traits of white oaks in natural regeneration landscapes as well as planted field trials. This
phenotypic information can then be integrated with existing and emerging genomics
resources for white oak in order to track critical traits in white oak improvement programs,
white oak forest management, and future reforestation initiatives.

Quadcopter drones offer an exceptional platform for conducting remote sensing over
large plantations and forested areas with limited personnel. Drone-based sensors are
already in widespread use for forest health monitoring and tree phenotyping [315,316].
The capabilities of these sensors and accompanying analyses characterize many aspects
of tree physiology and above-ground anatomy. Individual tree segmentation and species
identification are possible from both drone-based imagery and drone-based Light Detection
and Ranging (LiDAR) [317–319]. Near-infrared (NIR), wide-infrared, and RGB sensors can
be used to effectively measure tree water stress via various indices, such as the Normalized
Difference Vegetation Index (NDVI) [320,321]. With the aid of machine-learning algorithms,
both hyperspectral imagery and LiDAR accurately estimate tree height and Diameter at
Breast Height (DBH) [321–323].

Several examples of studies focused specifically on the remote sensing of North
American oak species have been published in the last few years. Mazis et al. [324] used
hyperspectral imagery in a high-throughput plant phenotyping (HTPP) setting to assess
biophysical traits and drought response in two white oak section species: swamp white
oak, Quercus bicolor, and dwarf chestnut oak, Quercus prinoides. Using hyperspectral
images, the study calculated 12 vegetation indices (VIs) and found that Vogelmann and
Maccioni indices had the greatest potential for assessing oak seedling performance and
health in drought conditions. These findings provide a ground-truthed method for rapid
phenotyping that could be tested in white oak using drone-based hyperspectral sensors.

An additional study focused on oak wilt disease, which significantly threatens oak-
dominated forests in the Eastern US. Sapes et al. [325] assessed the use of visible near-
infrared (VNIR) and short-wave infrared (SWIR) in the detection of oak wilt and developed
a stepwise approach to distinguish red oaks, Q. rubra, from other species in the canopy, and
to also distinguish infected from uninfected red oaks. This study provides a framework
for the future studies of oak wilt disease identification in white oaks. The combination of
drone-based remote sensing, proximal hyperspectral sensing, and machine learning offers
transformative potential in oak phenomics. These technologies enable efficient, large-scale
phenotypic data collection, critical for elucidating genotype–phenotype relationships in a
field progeny test or forest setting.

7. Conclusions and Perspectives

This review has taken a broad look into the research that has provided our current
understanding of the biology of oaks, with a focus on Q. alba, from its natural history,
phylogenetic placement, and ecological role as a keystone species, to the biotic and abi-
otic challenges facing the species. In addition, we have identified genomic, genetic, and
biotechnology resources and tools that are providing new insights into the physiology of
adaptive traits of Q. alba and a renewed potential for tree improvement to contribute to the
performance metrics in forest management. Although species in the North American and
Eurasian white oak clade have been the subject of research by silviculturists, forest ecolo-
gists and geneticists, and tree physiologists and pathologists for decades, an integration of
the knowledge gained and tools developed across these disciplines is needed to develop
the silvicultural practices required to assure the sustainability of Q. alba through improved
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regeneration and recruitment, increased resistance and tolerance to invasive pathogens and
pests, and enhanced resilience to abiotic stress as induced by climate change.

If we are to answer yes to the title of our review, many small steps will be needed,
adding to the knowledge base distilled here and leveraging the available technologies
and resources discussed. To start, reliable regeneration and recruitment, no small thing,
are necessary to provide the acorns that will develop into tall oaks. In the near-term
given shortages in the smaller age classes of Q. alba and climate change mandates to
mitigate and adapt, large numbers of seedlings will need to be planted across and within
various sites and silvicultural prescriptions. Ensuring high-quality planting stock, both
physiologically through nursery production and outplanting, and genetically though
appropriate and improved seed sources, will be the first steps. The traits discussed here
will need to be studied, managed, and improved in the Q. alba populations selected for
future environments. The following challenges will need to be met in order to facilitate the
study, management, and improvement of the traits required for the successful regeneration
and recruitment and adaptation to climate change: (1) the development of forest-/field-
scale phenomics platforms to link genes to traits; (2) the development of robust gene
testing platforms and transformation technologies, (e.g., Crisper/CAS); (3) the development
of efficient plant propagation protocols for germplasm preservation and experimental
analyses; (4) the establishment of provenance/progeny trials for forest/field-scale analyses;
(5) the development of methods to reduce the juvenility period, enabling rapid breeding
and early seed production; (6) the development and production of genetically improved
seed and high-quality seedlings for tree planting efforts; and (7) the development and broad-
scale implementation of genetically informed, ecologically sound, and climate forward
silvicultural practices for tree planting and early stand development.

Beyond Q. alba per se, we are in a period of climate crisis that is driving several mitiga-
tion approaches such as numerous broadscale worldwide tree planting initiatives [326–331];
however laudable these activities are, there is a danger of putting large numbers of trees on
the landscape without any consideration of the longer-term consequences, including initial
survival, competition control and early stand development, fire, and other environment
risks. This potential “Band-Aid approach” can lead to even greater problems. The need for
the large-scale reforestation of Q. alba and other forest tree species is a problem that requires
solutions supported by experimental knowledge (e.g., as generated from the WOGTIP and
working to overcome the challenges described above) integrated from multiple disciplines,
including silviculture, soils, ecology, physiology, genetics, and climatology in order to
ensure that these new forests continue to survive and produce tall trees, including oaks, in
a future planetary environment that will be potentially quite different from the one today.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/f15020269/s1, Table S1: An annotated listing of genetic and genomic
resources for white oak species (genus Quercus subgenus Quercus section Quercus) is provided, with
references [332–347], as supplemental Excel file “Table S1: White oak genomic/genetic resources”.
The supplemental file contains separate worksheets for Microsatellite (simple sequence repeat) DNA
markers (‘SSRs’), Single Nucleotide Polymorphism DNA markers (‘SNPs’), Quantitative Trait Loci
(‘QTLs’), Expressed Sequence Tags (‘ESTs’), nuclear genome assemblies (‘nGenomes’), and chloroplast
genome assemblies (‘cpGenomes’). The spreadsheets are organized by species and by publication
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sequence data; Supplementary File S1: Pests and Diseases background information (References
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