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Hyperspectral reflectance tools have been used to detect multiple pathogens in agricultural settings and single sources
of infection or broad declines in forest stands. However, differentiation of any one disease from other sources of tree
stress is integral for stand and landscape-level applications in mixed species systems. We tested the ability of spectral
models to differentiate oak wilt, a fatal disease in oaks caused by Bretziella fagacearum “Bretz” , from among other
mechanisms of decline. We subjected greenhouse-grown oak seedlings (Quercus ellipsoidalis “E.J. Hill” and Quercus
macrocarpa “Michx.” ) to chronic drought or inoculation with the oak wilt fungus or bur oak blight fungus (Tubakia iowensis
“T.C. Harr. & D. McNew” ). We measured leaf and canopy spectroscopic reflectance (400–2400 nm) and instantaneous
photosynthetic and stomatal conductance rates, then used partial least-squares discriminant analysis to predict treatment
from hyperspectral data. We detected oak wilt before symptom appearance, and classified the disease with high accuracy
in symptomatic leaves. Classification accuracy from spectra increased with declines in photosynthetic function in oak wilt-
inoculated plants. Wavelengths diagnostic of oak wilt were only found in non-visible spectral regions and are associated
with water status, non-structural carbohydrates and photosynthetic mechanisms. We show that hyperspectral models
can differentiate oak wilt from other causes of tree decline and that detection is correlated with biological mechanisms
of oak wilt infection and disease progression. We also show that within the canopy, symptom heterogeneity can reduce
detection, but that symptomatic leaves and tree canopies are suitable for highly accurate diagnosis. Remote application
of hyperspectral tools can be used for specific detection of disease across a multi-species forest stand exhibiting multiple
stress symptoms.

Keywords: disease response, forest pathology, hyperspectra, leaf reflectance, photosynthetic declines, remote sensing,
symptom physiology.

Introduction

Plant pathogens that infect trees have had devastating impacts
in the forests of North America and globally. The oak genus
(Quercus), in particular, which comprises nearly 30% of for-
est biomass in the USA and Mexico (Cavender-Bares 2019),
is a host to multiple pathogens. Oak wilt, caused by the
fungus Bretz (de Beer et al. 2017) and considered one of

the most destructive threats to oak trees in the USA (Wil-
son 2005), can be effectively controlled when detected early
(Juzwik et al. 2011). Hyperspectral methods of plant stress
detection have proven successful in detecting tree decline or
pathogen infections in agricultural settings (e.g., Pontius et
al. 2005a, 2005b, 2008, Zarco-Tejada et al. 2018). How-
ever, we have yet to differentiate specific diseases from other
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causes of forest tree decline, limiting the scope of current
methods.

Hyperspectral methods can be used to measure complex
biological signals or processes, including species identification
from leaf reflectance (Cavender-Bares et al. 2016) and changes
in physiological function and water status (Serbin et al. 2012,
Barnes et al. 2017, Cotrozzi et al. 2017). Foliar infections in
the leaves of poplars and oaks have been shown to cause
declines in photosynthesis and increases in volatile compound
emissions (Copolovici et al. 2014, Jiang et al. 2016), which
are detectable using known spectral indices (Peñuelas et al.
2013). In agricultural settings, hyperspectral measurements
and classification are deployed in pathogen detection for
precision agriculture (Mahlein et al. 2018), diagnosing and
differentiating among multiple foliar pathogens in sugar beets
(Rumpf et al. 2010) and among multiple pathogens and
nutritional deficiencies in avocado groves, even when symptoms
are similar in appearance (Abdulridha et al. 2018, 2019).
Infections of the bacterium Xylella fastidosa were detected
in olive groves in advance of visual symptoms with greater
than 80% accuracy, using a combination of spectroscopic data,
thermal stress indicators and high-resolution fluorescence linked
to photosynthetic traits (Zarco-Tejada et al. 2018). In forest
stands, measurements of decline due to single pathogens have
been very successful using multiple remote sensing approaches
(Pontius et al. 2005a, 2005b, 2008, Pontius and Hallett 2014,
Hanavan et al. 2015). Aerial color infrared imagery was used
for detection of oak wilt-infected trees among healthy oaks in
known infection pockets (Everitt et al. 1999). However, spectral
evidence of stress responses due to different causes can be
quite similar (Carter and Miller 1994), complicating detection;
in a drought and oak wilt-inoculation factorial design, water
and greenness indices were not significantly different between
treatments (Weissling et al. 2005). Explicitly testing the ability
to differentiate oak wilt from other stresses, within multiple
species, is integral to advance our understanding of methods
of spectral detection of disease.

The physiological processes of change in oaks that are
infected by oak wilt are not completely understood. Occlusion
of xylem vessels, from both accumulated fungal metabolites
and tyloses formed by the plant to impede pathogen spread,
contributes to hydraulic dysfunction and leaf wilt (Marchetti
1962, Jacobi and MacDonald 1980, Juzwik et al. 2011, Yadeta
and Thomma 2013). Fungal toxins and host responses alter
leaf growth and structure, disrupt cell integrity and eventually
lead to leaf necrosis and loss (Wilson 2005). Oak species of
the red oak section (Lobatae), including Quercus ellipsoidalis
and Quercus rubra, appear to have inefficient immune responses
(sensu Yadeta and Thomma 2013) compared with white oaks
(Quercus, e.g., Quercus macrocarpa, Quercus alba) (Jacobi and
MacDonald 1980, Juzwik et al. 2011). Rapid translocation of
spores in the larger diameter vessels of red oaks occurs before

the plants have formed adequate tyloses, leading to broader
stem infection and more hyphal growth within the plant (Jacobi
and MacDonald 1980, Kozlowski and Winget 1963). Complete
crown wilt in red oak species may occur within as little as
4 weeks of tree infection (Juzwik et al. 2011). By contrast,
white oaks form more effective tyloses and other blockages
early in response to infections and have anatomical differences,
like isolated groupings of xylem vessels, that halt the spread
of infection (Marchetti 1962, Kozlowski and Winget 1963,
Jacobi and MacDonald 1980). Oak wilt infections are often
compartmentalized within branches of white oaks and infected
trees may persist for years with only partial canopy effects
(Juzwik et al. 2011). Differences in species disease response
and symptom progression may require different approaches in
spectroscopic diagnosis.

Symptoms of oak wilt may superficially appear like that of
other abiotic stresses, especially drought, or of other oak pests
or pathogens, despite differences in the physiological effects
of these stresses. The incidence of many of these stresses
may increase with changes in climate. Bur oak blight, caused
by Tubakia iowensis (T.C. Harr. & D. McNew) infections in
the white oak Q. macrocarpa, leads to leaf wilt and eventual
discolored scorching, and confusion with oak wilt is possible
until the advanced disease stages of bur oak blight are exhibited
(Harrington et al. 2012). Bur oak blight appears to only cause
mortality in some genotypes (Pokorny 2017), yet the wetter
spring conditions that are currently observed and forecast for
much of the Q. macrocarpa range may increase the infection
potential and virulence of bur oak blight (Swanston et al. 2018).
Drought stress, in the absence of pathogen infection, can cause
hydraulic dysfunction, leaf desiccation and leaf wilting patterns
that can be mistaken for oak wilt. Lengthened drought seasons
may cause shifts in forest structure, leaving more trees dying
from drought (Swanston et al. 2018), and red oak species are
particularly vulnerable to drought mortality in the central and
southern USA (Allen et al. 2010). With earlier spring warming,
the sap feeding beetles that can spread oak wilt are active
and potentially spreading the fungus prior to seasonal tree-
cutting restrictions, an important method of reducing above-
ground spread (Jagemann et al. 2018). Because oak wilt
primarily spreads via conidia in the sap stream of grafted roots,
management requires root severing and stem removal. As oak
populations are already in decline in much of the central and
eastern USA (Fei et al. 2011), limiting the impact of oak wilt on
oak communities requires rapid methods that identify oak wilt
and reduce false positives.

Here we ask: (i) Can we accurately differentiate oak wilt
from drought, bur oak blight and healthy plants? (ii) Can we
detect oak wilt at early infection stages? (iii) Are there spectral
regions uniquely associated with, or diagnostic of, oak wilt?
(iv) Are physiological changes in response to drought and
pathogen inoculation associated with spectroscopic changes in
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Oak wilt spectral detection from other stressors 379

Table 1. Experimental sample sizes. Oak seedling sample sizes by treatment included in 2017 and 2018 experiments. In 2018, 25 plants of each
treatment were allotted for leaf-level measurements and 5–7 plants of each treatment were used for whole-plant measurements.

Species Control Drought Oak wilt Bur oak blight Totals Annual totals

2017 Q. ellipsoidalis 19 19 20 58
Q. macrocarpa 17 17 17 18 69 127

2018 Q. ellipsoidalis 25/7 25/6 25/6 94
Q. macrocarpa 25/5 25/7 25/7 25/7 126 220

leaves and canopies? We established seedling experiments, with
controls, using northern pin oak (Q. ellipsoidalis “E.J. Hill”) and
bur oak (Quercus macrocarpa “Michx.”), and either inoculated
the plants with B. fagacearum or T. iowensis, or subjected the
plants to chronic drought. We measured leaf and canopy hyper-
spectral reflectance, leaf water potential and instantaneous gas
exchange rates, and monitored stress symptoms throughout the
experiment from treatment imposition to advanced drought or
disease stages.

Materials and methods

Experimental design

We performed two separate experiments, in 2017 and
expanded in 2018, both using northern pin oak, Q. ellipsoidalis
and bur oak, Q. macrocarpa. We purchased the plants each year
as 2-year-old winterized seedlings (Lawyer Nursery, Plains,
Plains, MT, USA). We repotted seedlings into 1.7 gallon tree
pots (Steuwe and Sons, Tangent, OR, USA) in 1:1 potting
soil:sand mix during the early spring and allowed plants to
leaf out in the greenhouses. We watered pots individually with
soil drip irrigation and used halogen grow lamps to augment
light. We imposed the same treatments in both experiments: (i)
stem inoculation with B. fagacearum, (ii) leaf inoculation with T.
iowensis (Q. macrocarpa only), (iii) reduced watering regime to
induce chronic drought or (iv) control (Table 1). In 2018, five
to seven individuals of each species by treatment combination
were used for whole-canopy spectral reflectance measures. We
spaced pots with a pot-width gap on all sides to minimize any
risk of contamination and arranged plants in a stratified way
across benches to have roughly equal numbers of each species
by treatment combination on all greenhouse benches.

Treatments: drought and fungal inoculations and drought
monitoring

We inoculated plants and imposed drought treatments when the
majority of canopy leaves were matured (13 July 2017 and 2
July 2018). We cultured an isolate of B. fagacearum, obtained
from a naturally infected Q. ellipsoidalis tree in Stacy, MN in
2016, for 2 weeks, then flooded the Petri plates with 5 ml
of sterile deionized water and gently scraped the culture with
a rubber spatula. We filtered the conidia suspension through
three layers of cheesecloth and diluted to a concentration of

1 × 106 spore·ml−1 water. We inoculated plants with the oak wilt
fungus (hereafter, oak wilt treatment) by puncturing the stems
to the sapwood with a 26 gauge sterile syringe 3 cm above the
root collar and applying a single hanging droplet (∼0.01 ml)
of the homogenized B. fagacearum conidia solution to the
wound for passive uptake (Fenn et al. 1975). We inoculated
leaves of Q. macrocarpa with bur oak blight fungus (hereafter,
bur oak blight treatment) by puncturing the midveins abaxially
(leaf base to distal end every 1 cm) using sterile dissecting
teasing needles. Immediately after puncturing, we applied, with
a paintbrush, a homogenized 1 × 106 spore·ml−1 water solution
of T. iowensis spores (from an isolate obtained from Ames,
IA, in 2017) in sterile deionized water to the length of the
midvein. In 2017 we inoculated all leaves of each treated plant,
and in 2018 we inoculated or injured only five upper canopy
leaves of each plant. After bur oak blight inoculation, we misted
the inoculated plant canopies with sterile deionized water and
covered them with a clear plastic bag for 48 h (Harrington
et al. 2012). All individuals were given negative stem and
leaf inoculations with deionized water to control for inoculation
injury.

We imposed drought treatments by removing irrigation spouts
and allowing soil to dry down to a target of 3% soil volumetric
water content (VWC), watering as needed. We monitored soil
moisture using a Fieldscout TDR 300 meter (Spectrum Tech-
nologies, Inc.,Aurora, IL, USA) fitted with 7′′ rods. We kept well-
watered plants at a soil VWC of 16.5% (±4) and 18% (±5.1),
in 2017 and 2018, respectively. After the third week, drought
plants were at a soil VWC of 3.1% (2017) and 3.2% (2018).
We measured pre-dawn water potential on asymptomatic leaves
of four plants per species by treatment combination nearly
weekly throughout the experiments.

Symptom monitoring

We monitored symptoms of the fungal diseases (2017 and
2018) and drought (2018 only) at least once weekly on all non-
control plants. We counted numbers of healthy leaves (leaves
not exhibiting chlorosis, browning or bronzing discoloration,
obvious loss of turgidity or necrosis), wilting (loss of turgidity,
desiccation, necrosis due to either drought or oak wilt stress),
and abscissed leaves. On bur oak blight plants, we only counted
inoculated leaves, but on all other non-control plants, we tracked
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symptoms throughout the canopy of each seedling. We con-
verted counts to canopy fractions of each symptom type.

Spectral reflectance measurements

We measured adaxial leaf spectral reflectance (2017 and
2018) and whole-canopy spectral reflectance (2018) from 400
to 2400 nm using a Spectra Vista HR 1024i spectroradiometer
(Spectra Vista Corporation, Poughkeepsie, NY, USA) and Spec-
tra Vista Leaf Reflectance Probe (25o field of view (FOV) fiber
optic and integrated white Zenith disc). Leaf measurements
were done differently in 2017 and 2018. In 2017, we marked
four upper canopy leaves per plant and repeatedly measured
those leaves over the course of the experiment. In 2018, we
measured three upper canopy leaves on each individual in
each of the four following categories, as available: (i) visually
asymptomatic leaves, (ii) green tissue available on any stage
of symptomatic leaves, (iii) transitioning zones between green
tissue and symptomatic tissue and (iv) symptomatic tissue
(chlorotic, wilting or necrotic). In each year, we measured a
subset of plants each week of the experiment (Tables S1 and
S2 available as Supplementary Data at Tree Physiology Online).

We measured canopy reflectance by placing seedlings within
a low-reflectance black box (painted in a black matte paint
of reflectance <4%). We fixed the Spectra Vista fiber optic
cable (25o FOV) 65 cm over the base of the box (maximum
28.8 cm diameter horizontal field of view, HFOV) and used
a 72 W halogen flood lamp (Panasonic, 2880 K) affixed
within 10o of vertical of the fore-optic as a light source. We
measured seedlings so that initial seedling maximum canopy
height was 24.5 cm (± 0.7) above the box base (40 cm below
the fore-optic or 17.7 cm HFOV on the uppermost canopy).
We turned pots to measure each plant four times at fixed
positions to capture different canopy views and treated each
view as pseudo-independent measurement. We measured five
to seven plants per species by treatment combination (Table 1).
Before measurement of each individual, we referenced light
conditions using a Spectralon Diffuse Reflectance Standard
(30.5 × 30.5 cm, 99% reflectance, Labsphere, Sutton, NH,
USA). We used low reflectance black felt (<2% in measurement
range, Creatology, Michael’s Stores, Inc., Irving, TX, USA) as a
background for canopy measurements. We found that our light
source had high variation above 1890 nm in white reference
measurements and excluded wavelengths >1890 nm from our
analyses of canopy spectra.

Leaf gas exchange

We used a LI-6400XT with a leaf chamber fluorometer attach-
ment (LI-COR Environmental, Lincoln, NE, USA) to measure
instantaneous photosynthetic and stomatal conductance rates
on asymptomatic leaves (and symptomatic leaf tissue as
available in 2018) during the same periods as we collected
leaf-level spectral reflectance. In 2017, we kept CO2 constant

at 400 p.p.m. and relative humidity at 45%. In 2018, we
kept those parameters at ambient levels. In both years, we
fixed other parameters: PAR = 600 μmol m−2 s−1, flow
rate = 300 μmol s−1, block temperature = 24◦C, based upon
average ambient light and temperature in the greenhouse during
the measurement period. We let all leaves equilibrate in the
chamber before measurement. In analyses, we used both relative
change from control and actual rate differences from control as
a variable of interest. We found mean control values for each
species by experimental week, then calculated relative change
as 1 – (measured rate/mean control) and difference from control
as measured rate – mean control.

Spectral processing and data analysis

We performed all data processing and analyses in R (v. 3.5 or
greater, dynamic R ref: www.r-project.org). We used the spectro-
lab package (Meireles et al. 2018) for all raw spectra importing,
smoothing, resampling and averaging. For diagnostic modeling,
we removed from analyses spectra with low reflectance at
770 nm (leaf level spectra threshold <35%, canopy <20%)
as a quality control on poor measurements. To reduce model
dimensions, we resampled spectra every 10 nm from 400
to 2400 nm (ending at 1890 nm in whole-seedling canopy
measurements because of variation in light source at or above
1900 nm). We used four different datasets for our models:
(i) 2018 symptomatic (and control) leaf reflectance, (ii) 2018
asymptomatic (and control) leaf reflectance, (iii) 2018 canopy
reflectance and (iv) 2017 leaf reflectance (Table 2). Leaf
spectra collected on the same day were averaged to individual.
We also subset these datasets by experimental week for time
explicit analyses (Table S1 available as Supplementary Data at
Tree Physiology Online), species for species–specific classifi-
cation, or specific symptomatic tissue type (different types of
tissue on a symptomatic leaf).

We used partial least-squares discriminant analysis (PLS-DA),
a method of linear discriminant analysis when using a large
number of predictive components (Barker and Rayens 2003),
to predict likelihood of belonging to any of the treatments:
control, oak wilt, drought or bur oak blight (Q. macrocarpa
only). In datasets with small sample sizes (responses subset
to experimental week or specific symptomatic tissue types),
we condensed responses to only “oak wilt” or “not oak wilt”
(all other treatments). We used PLS-DA to classify and test
the accuracy of species classification in each dataset. For all
models, we chose a model component number that either
maximized Kappa, a model performance statistic that quantifies
model performance as better than random (Cohen 1960), or
approximated the inflection point of Kappa in response to the
number of components. We normalized and split the data into
50:50 test and training sets (balanced for factor of interest)
and used probability methods of classification within the caret
and pls packages (Kuhn 2008, Mevik et al. 2018). Each
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Table 2. Spectral measurement sample sizes in each dataset. Values are the number of individual plants at any measurement time (spectra averaged
to individual) except in the case of whole-plant canopy spectra, where each spectra represents a different view of a plant. Symptomatic data were
resampled for balanced sample sizes in analyses.

Year Dataset Q. ellipsoidalis Q. macrocarpa Total

Control Drought Oak wilt Control Drought Oak Wilt Bur oak blight

2018 Symptomatic leaves 1531 18 53 1561 32 38 134 2751

2018 Asymptomatic leaves 153 149 135 156 147 153 154 1047
2018 Canopy 97 68 60 74 81 90 105 575
2017 Leaves 71 72 73 66 65 70 66 483

1Control leaf reflectance measurements were added to the symptomatic leaf dataset for analyses and are not included in row totals.

PLS-DA model is the averaged result of 100 iterations of
fitting with a new training and test dataset. In datasets where
the treatment samples sizes were unbalanced, we pseudo-
randomly resampled the data in each iteration into balanced
sample sizes based upon the number of the least-represented
treatment (Table 2). Hereafter, we refer to the average results
(with standard deviation) of 100 iterations as the PLS-DA model
for each dataset.

We used the PLS-DA results to determine whether there
were spectral regions unique, or diagnostic, to oak wilt-infected
plants. We extracted the weighted importance of predictive
variables (wavelengths) using the varImp() function in caret
(Kuhn 2008) when fitting 100 iterative PLS-DA models and
calculated mean weights for each variable in the dataset. To
reduce the number of possible important regions to those with
the highest weights, we selected the 20 variables of greatest
weight from each averaged model, aggregated those with the
values from other averaged models (i.e., 20 variables from
the asymptomatic leaf model, 20 from the symptomatic leaf
model), removed duplicates and extracted reflectance values
(from spectra resampled every 1 nm) for each important
wavelength from each spectral dataset. We also calculated
common reflectance indices that have been found to indicate
declines in tree health (Pontius et al. 2005b): photochemical
reflectance index (PRI, Gamon et al. 1990, 1997), chlorophyll
fluorescence (Mohammed et al. 1995), Carter and Miller Stress
Index (chlorophyll content, Carter and Miller 1994), water band
index (Tucker 1980, Carter 1993, Penuelas et al. 1997), R683
(chlorophyll a, Carter 1993), R760 (water, Osborne and Fearn
1986), R952 (water, Williams and Norris 1987) and R1653
(benzene rings, Williams and Norris 1987). We resampled the
spectra every 1 nm because several of these reflectance indices
use specific values requiring that resolution.

We used the reflectance values of potentially important
variables to test for oak wilt diagnostic values. We tested for
the effects of treatment, species and experimental week on
reflectance and reflectance index values using linear regression
and found the mean difference in reflectance between oak wilt
and all other treatments. In any cases where treatment showed
a significant effect (P < 0.001), we checked for pairwise

differences (post hoc Tukey test, alpha = 0.001) between oak
wilt and all other treatments. In any cases where species was
a significant effect (P < 0.001), we checked within species
data subsets for pairwise differences in spectral reflectance
between oak wilt and all other treatments. We then assessed
whether this smaller set of oak wilt diagnostic wavelengths
could be used to classify the disease. To reduce duplication
of correlated wavelengths from among regions represented by
several consecutive wavelengths, we chose wavelengths that
were associated with the largest absolute mean difference in
reflectance values between oak wilt and other treatments or,
if the reflectance values of consecutive regions were similar,
wavelengths that were well annotated in the literature. We used
this subset of wavelengths to fit a reduced dimension PLS-DA
model.

We used linear models to evaluate the effect of relative
change (or mean difference from control) of oak wilt treatment
gas exchange rates on classification accuracy. We also used
linear models to evaluate the effect of mean canopy symptom
prevalence, treatment, species and leaf symptom status on
treatment relative change in gas exchange rates.

Spectra, physiological and symptom data are available online
from the Data Repository for the University of Minnesota,
DRUM, https://doi.org/10.13020/cgy7-256, and Ecological
Spectral Information System, EcoSIS, http://ecosis.org, https://
doi.org/doi:10.21232/h90m-mg68 and https://doi.org/doi:
10.21232/dr6e-n634 (1 nm spectra).

Results

Symptoms progressed differently between treatments
and species

Predawn leaf water potentials were significantly lower in plants
within the drought treatment than in all other treatments
(P < 0.05) by the beginning of the second week of the
experiment in 2018. There were no significant differences
between the water potentials of other treatments (Figure S1
available as Supplementary Data at Tree Physiology Online). In
2017, Q. ellipsoidalis water potential remained higher in the
drought treatments than the drought-treated Q. macrocarpa.
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Table 3. Correlations of symptom type with experimental week. Correlations of experimental week with leaf symptom percentages (week 1 =
inoculation) for each treatment type Bur oak blight leaves were not classified as wilted (NA) during the experiment.

Oak wilt Drought Bur oak blight

% Healthy −0.98 −0.98 −0.41
% Wilted 0.92 0.94 NA
% Abscissed 0.97 0.82 0.97

Drought treatments had significantly (P < 0.05) lower predawn
water potentials than control treatments by week 5 in 2017.

Bur oak blight symptoms appeared within a few days after
inoculation and over 50% of bur oak blight inoculated leaves
were eventually lost during the experiment (Figure S2 available
as Supplementary Data at Tree Physiology Online). Quercus
macrocarpa maintained a higher percentage of healthy leaves in
oak wilt treatments and fewer wilted leaves than Q. ellipsoidalis
in drought or oak wilt treatments (Figure S2 available as
Supplementary Data at Tree Physiology Online). Oak wilt and
bur oak blight treatment plants had higher rates of abscission
than droughted plants. Symptom prevalence of any type was
highly correlated (>|0.80|) with experimental week within
both drought and oak wilt treatments, and rates of abscission
were correlated with experimental duration in bur oak blight
treatments (r = 0.97, Table 3).

Oak wilt classification model comparisons: high sensitivity to
oak wilt in symptomatic leaves

Model sensitivity to oak wilt (correct classification of oak
wilt treatments, reported as average percentage of treatments
classified, followed by standard deviation) differed significantly
between leaves of different symptom status and leaf or canopy
measurements, when data from all experimental times were
pooled (Figure 1). Models fit to symptomatic leaf data far out-
performed models fit to canopy and asymptomatic leaf datasets
(P < 0.001): 79.2% ±8 of oak wilt individuals correctly
classified (Figure 1, Table S3 available as Supplementary Data
at Tree Physiology Online), overall model accuracy (77.9% ±4)
and model Kappa (70.5 ± 5). Model sensitivity to oak wilt was
high regardless of type of tissue measured on the symptomatic
leaf, but was highest among advanced symptomatic tissue
(88% ±5, Figure S3 available as Supplementary Data at Tree
Physiology Online). In canopy reflectance, oak wilt sensitivity
was 60.2% ±6 (accuracy = 61.2% ±3, Kappa = 47.6 ± 4).
Oak wilt sensitivity was 54.5% ±2 in asymptomatic leaves
(accuracy = 62% ±2, Kappa = 48 ± 3). Models fit to 2017
leaf measurements had the lowest oak wilt sensitivity, 45.3%
±7 (accuracy = 46.3% ±3, Kappa = 26.1 ± 5, Figure 1). All
models had greater than 59% sensitivity to drought. Drought
and oak wilt plants were more often confused for one another
in symptomatic leaves or canopy measurements, while control
and oak wilt plants were most often confused for one another
in leaf reflectance measurements that included asymptomatic

Figure 1. Highest oak wilt and other treatment PLS-DA model sensitivities
are in symptomatic leaves. Model sensitivity (percent of each treatment
correctly assigned) to each treatment in four datasets, using spectra from
all measurement times. Asymptomatic and symptomatic lleaf datasets
both include control leaf measurements. Error bars show one standard
deviation from 100 iterative fits PLS-DA models for each dataset. All
model sensitivities to oak wilt are significantly different (P < 0.001)
Points are offset for display.

leaves (Figure 2). False positives were generally rare in the
symptomatic dataset (Figure 2a), where less than 4% of each
other treatment was misclassified as oak wilt. Oak wilt confusion
for other treatments was low (≤10%). Classification sensitivity
was 74% or greater for all treatments in the symptomatic
dataset. False positive classifications as oak wilt were higher
in PLS-DA models that included asymptomatic leaves: 13.2%
(±3) of control canopy measurements were misclassified as
oak wilt, while 20.1% (±4) and 33.7% (±7) of controls were
misclassified as oak wilt in 2018 asymptomatic leaves and
2017 leaves, respectively (Figure 2).

Oak wilt model sensitivity increases with symptom
prevalence, to a point

While visible oak wilt symptoms were nearly zero (week 2,
1.7% canopy leaves wilted), oak wilt classification sensitivity
in asymptomatic leaves was 48% ±12 and 66% ±9 in
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Figure 2. Confusion matrices of PLS-DA treatment classification models. Average percentage of classifications (and one standard of deviation) into
each group from 100 PLS-DA model-fitting iterations of (a) symptomatic (and control) leaves, (b) asymptomatic (and control) leaves, (c) canopy
and (d) leaves (2017, repeated measures of marked leaves regardless of symptom status). Vertical axis is applied treatments and horizontal axis is
predicted classification.

canopy measurements (Figure S4 available as Supplementary
Data at Tree Physiology Online). Model sensitivity to oak
wilt improved with time in canopy spectral models and was
highest in the last week of measurement (maximum at week
16, 82% ±14; Figure S4 available as Supplementary Data
at Tree Physiology Online). Model sensitivity increased with
canopy oak wilt symptom prevalence, to a point (Figure S5
available as Supplementary Data at Tree Physiology Online).
Model sensitivity was highest in week 9 in asymptomatic leaves

(72.1% ±11) and week 8 in symptomatic leaves (97.3% ±5),
and then declined in subsequent weeks. These maxima in oak
wilt sensitivity in leaf-based models were correlated with oak
wilt symptom prevalence of 18–23% wilted leaves (Table S5
available as Supplementary Data at Tree Physiology Online).
We lacked symptom prevalence data after week 11, but
symptom prevalence gradually increased during the latter part
of the experiment (Figure S2 available as Supplementary Data
at Tree Physiology Online).
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Figure 3. PLS-DA models classify species with very high sensitivity
and within species PLS-DA model performance depends upon tissue
type. (a) PLS-DA model classification of each species. (b) PLS-DA
oak wilt sensitivity in species data subsets. Asterisks denote significant
differences in oak wilt sensitivities between species-specific models
(∗∗P < 0.01 and ∗∗∗P < 0.001). Error bars are one standard of deviation
from 100 iterative PLS-DA model fits.

Highly accurate species classification and species-specific
models do not outperform a single model

PLS-DA models fit to leaf level data that included asymptomatic
leaves were the most accurate at classifying species (Figure 3a
and Table S6 available as Supplementary Data at Tree Physiology
Online). From 2018 asymptomatic leaf level reflectance models,
we correctly classified 99.5% (±0.4) of Q. ellipsoidalis and
99.8% (±0.2) of Q. macrocarpa, and values were nearly
as high in models fit to 2017 leaves. Species classification
successes were also high among symptomatic leaves: 92.7
(±4%) and 98.4% (±1) in Q. ellipsoidalis and Q. macrocarpa,
respectively.

When data were subset by species, sensitivity of PLS-DA
models to oak wilt remained highest in symptomatic leaves,

where it was classified at a significantly higher sensitivity
in Q. macrocarpa (71.1% ±12) than in Q. ellipsoidalis
(65.3% ±18) (P > 0.001, Figure 3b, Figures S6, S7 and
Table S4 available as Supplementary Data at Tree Physiology
Online). Classification of oak wilt was also higher in whole-
canopy reflectance models in Q. macrocarpa (68.6% ±6)
than in Q. ellipsoidalis (62.4% ±11). In symptomatic Q.
ellipsoidalis models, drought and oak wilt treatments were
frequently misclassified as one another (29% Types I and II
errors). That confusion also occurred within Q. macrocarpa
but at lower rates (9% Type I and 15% Type II errors), and
oak wilt was often misclassified as bur oak blight (13.4%;
Figure S6 available as Supplementary Data at Tree Physiology
Online). Model sensitivity to oak wilt was overall lower in
asymptomatic leaves, and in models based on asymptomatic
leaves, sensitivity was significantly greater in Q. ellipsoidalis
(57.4% ±6) than Q. macrocarpa (46% ±6) (P < 0.001,
Figure 3b). In asymptomatic leaves of both species, confusion
rates were highest between control and oak wilt (15–27%).
In asymptomatic leaves of Q. macrocarpa, oak wilt and bur
oak blight were often confused (15–20%; Figure S6 available
as Supplementary Data at Tree Physiology Online). When
we excluded bur oak blight individuals from PLS-DA analysis
(only Q. macrocarpa were inoculated) in symptomatic or
asymptomatic leaves, we found that oak wilt sensitivity within
Q. macrocarpa improved dramatically (symptomatic = 80.8%
±11, asymptomatic leaves = 69.6% ±4; Figure S6 available
as Supplementary Data at Tree Physiology Online).

Wavelengths associated with oak wilt in the near infrared
and shortwave infrared

We tested for effects of treatment, experimental week and
species at 106 wavelengths important to our different oak wilt
models and eight indices and reflectance wavelengths from
Pontius et al. (2005b). We found reflectance values for oak
wilt treatment individuals to be significantly different from all
other treatments—or diagnostic of oak wilt—at 66 different
wavelengths, including three known indices/single wavelength
reflectance values (Table S3 available as Supplementary Data at
Tree Physiology Online, Figure 4). In asymptomatic leaves and
canopy measurements, oak wilt diagnostic wavelengths were
all within or near the near-infrared region and low shortwave
infrared, 820–1320 nm (Figure 4b). The mean differences
in reflectance between oak wilt and all other treatments (an
estimate of the diagnostic power at that wavelength) in asymp-
tomatic leaves were smaller in canopy reflectance (−0.22 to
0.33%) than in leaves (0.61–0.67%). Differences in reflectance
values of spectra between oak wilt and all other treatments
were quite similar in the near-infrared, while differences were the
greatest (absolute value) between oak wilt and bur oak blight
in the visible and oak wilt and control in the shortwave infrared
(Figure 4b). In canopy spectra, the interaction of experimental
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Figure 4. Oak wilt-diagnostic spectral regions and differences between treatment spectral signatures. Orange points are wavelengths at which oak wilt
reflectance values were significantly different than all other treatments (mean differences between oak wilt-inoculated reflectance values and all other
treatments, pairwise comparisons, P < 0.001). Spectra are median values of percent reflectance differences between oak wilt-inoculated individuals
and the median value of other treatments. (a) Symptomatic (and control) leaves. (b) Asymptomatic (and control) leaves.

week and treatment was a significant predictor of reflectance
values (Table S3 available as Supplementary Data at Tree
Physiology Online). We found oak wilt diagnostic wavelengths
across a broader part of the spectrum in symptomatic leaves:
reflectance differences were larger (3.2–5.3%) in the near
infrared and low shortwave infrared and extended to portions of
the spectrum out to 2400 nm (4.8–13%, Figure 4a and Table
S3 available as Supplementary Data at Tree Physiology Online).
There were large differences between oak wilt symptomatic
leaves and both symptomatic bur oak blight treatments and
healthy control leaves in the visible spectra, but differences were
small when compared with drought treatments (Figure 4a).

Reflectance values were significantly different between species
in several oak wilt diagnostic regions (780–1390, 1490–
1870 and 2000–2400 nm; Table S3 available as Supple-
mentary Data at Tree Physiology Online). However, mean dif-
ferences in reflectance between oak wilt and all other treat-
ments within either species were usually similar in magnitude.
In asymptomatic leaves, where reflectance differences were
generally quite small, we found consistently smaller differences
in reflectance between oak wilt inoculated Q. macrocarpa and
other treatments.

We used a reduced set of 30 (of 66) diagnostic wavelengths
(Table S3 available as Supplementary Data at Tree Physiology
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Figure 5. PLS-DA model oak wilt sensitivity increases with photosynthesis and stomatal conductance relative change from control. Mean weekly
PLS-DA oak wilt sensitivity by relative change ratio of oak wilt-inoculated individual leaf gas exchange rates. Error bars are standard error of oak wilt
sensitivity and standard error of the mean relative change, ∗∗P < 0.01. (a) Instantaneous photosynthetic assimilation rate relative change and (b)
instantaneous stomatal conductance rate relative change.

Online) as predictors of oak wilt in PLS-DA models. Model sen-
sitivity to oak wilt in symptomatic leaf measurements was nearly
as high as when using the full set of 200 wavelengths (74.1%
±10, Figure S8 available as Supplementary Data at Tree Phys-
iology Online): false positives were low (control = 0.3%, bur
oak blight = 2.9% and drought = 6.7%) as was oak wilt
misclassification as drought (14.8% ±8). Oak wilt sensitivity
was significantly reduced in asymptomatic leaves or canopy
models (41% ±4 and 48.5% ±6, respectively, Figure S8
available as Supplementary Data at Tree Physiology Online).

Changes in physiological function were associated with oak
wilt model sensitivity

Spectroscopic sensitivity to oak wilt among time specific
(weekly) PLS-DA was positively correlated with relative
change between oak wilt and control rates of instantaneous
photosynthesis (R2 = 0.61, P < 0.01, F1,10 = 15.6, Figure 5a)
or stomatal conductance (R2 = 0.53, P < 0.001, F1,10 = 11.3,
Figure 5b). This was true regardless of leaf symptom status
(not significant at P < 0.1) and also true when the predictor
was actual differences from control (Figure S9 available as
Supplementary Data at Tree Physiology Online).

Treatment and leaf symptom status (asymptomatic or
symptomatic), but not species, were significant predictors
of differences from control in photosynthesis (R2 = 0.57,
P < 0.001, F6,51 = 11.5) and stomatal conductance
(R2 = 0.47, P < 0.001, F4,53 = 11.9). In oak wilt-inoculated
plants, relative changes in gas exchange rates in asymptomatic
leaves were significantly correlated with canopy symptom
prevalence, especially wilted canopy fraction, but not in
symptomatic leaves (P < 0.05, Figure 6 and Figure S10
available as Supplementary Data at Tree Physiology Online).
Oak wilt symptomatic leaves had significantly greater declines
in gas exchange than asymptomatic leaves (P < 0.001,
Table S2 available as Supplementary Data at Tree Physiology

Online, Figure 6). In drought treatments, relative declines in gas
exchange were not significantly different between leaf types
(P > 0.05, Table S2 and Figure S11 available as Supplementary
Data at Tree Physiology Online), and gas exchange rate changes
in both leaf types were significantly predicted by wilted canopy
fractions (Figure 6). In symptomatic bur oak blight leaves,
we observed significantly greater declines in instantaneous
photosynthesis (P < 0.05, Table S2 available as Supplementary
Data at Tree Physiology Online).

Discussion

This work shows that oak wilt can be accurately detected and
differentiated from other stressors in multiple oak species using
spectral data. At the leaf level, we were able to diagnose the
disease in the majority of affected plants before symptoms
were apparent, yet we could most accurately classify plants
after the appearance of symptoms, and canopy-level detection
was greatest when 20% of the canopy was symptomatic.
Classification models fit to spectra of symptomatic tissue rarely
gave false positive errors, and we seldom misclassified healthy
plants or those stressed from other factors. We found that
there were differences in oak wilt sensitivity in species-specific
models, but those models did not consistently outperform
a single model including both species. We also found that
there are multiple spectral regions in the near-infrared and
shortwave infrared, associated with water content, structural
and non-structural carbohydrates and photosynthetic function,
where oak wilt-reflectance values are significantly different from
the other treatments. In the visible spectral regions, oak wilt-
affected plants remain similar to droughted plants. We found
that photosynthetic and stomatal conductance rates declined
differently between bur oak blight, oak wilt and drought stressed
plants, even when symptoms were similar in appearance. Leaves
of oak wilt plants had the largest variation in decline in gas
exchange between asymptomatic and symptomatic leaves.
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Figure 6. Gas exchange rate relative change from control correlated with symptom progression in canopies. Mean weekly treatment relative change
by mean symptom prevalence in canopy for symptomatic and asymptomatic leaves. Species are shown by squares (Q. ellipsoidalis) and circles (Q.
macrocarpa). Values are R2 followed by significance (+P < 0.1, ∗P < 0.05, ∗∗P < 0.01 and ∗∗∗P < 0.001). Instantaneous photosynthetic rate relative
change (a–c) or mean stomatal conductance relative change (d–f) by mean canopy fraction of healthy, wilted and abscissed leaves.

PLS-DA model sensitivity to oak wilt increased as oak wilt-
affected plants diverged in physiological function from control.

The heterogeneity of disease effects and symptom appear-
ance is the primary issue behind oak wilt-classification errors.
Oak wilt conidia must move horizontally through the host xylem
and upward through the sapstream, and oaks form tyloses to
halt this or, in the case of white oaks, have vessel groupings that
also limit the spread, causing oak wilt infection to affect only
parts of the plants, at least initially (Marchetti 1962, Kozlowski
and Winget 1963, Jacobi and MacDonald 1980, Yadeta and
Thomma 2013). In contrast, chronic drought stress results in
an overall decline in plant water status and physiological function
of treated seedlings, regardless of symptom status, early on in
treatment. In models that included asymptomatic leaves, the
class sensitivity was higher for drought than all other classes,
likely because water deficiency causes detectable and uniform
changes in plant status relatively quickly. In both oak wilt and bur
oak blight, asymptomatic and symptomatic leaves were phys-
iologically functioning in different ways. Models that included
asymptomatic leaves, including canopies, were not, early in
infection, highly sensitive to oak wilt, and oak wilt and control
treatments were often confused for one another. The element of
timing of disease spread is apparent in canopy models, where
model performance improved significantly with symptom preva-
lence in the canopy. And in asymptomatic leaves, if measured for
longer periods of time, the effects of large fractions of wilted
canopy improve detection even in healthy-appearing leaves.
In the 2017 leaf models, including asymptomatic leaves and

measuring plants for a shorter time period reduced classification
success. When we eliminated the problem of simply detecting
the oak wilt disease signal among asymptomatic leaves by
using (i) only control and symptomatic leaves of any stress, (ii)
canopies showing increasing oak wilt symptom prevalence or
(iii) the remaining asymptomatic leaves on plants that can no
longer maintain high physiological function, then we detected
oak wilt with high sensitivity and accurately distinguished it
from other stresses. Bur oak blight detection is even more tricky
because unlike a vascular wilt, it affects the function of other
leaves indirectly, and in our case, the infection was limited to
inoculated leaves. Yet we were able to detect the disease with
high sensitivity in symptomatic leaf measurements. Many tree
diseases are compartmentalized by host responses or the slow
progression of infection (Shigo and Marx 1977, Beier et al.
2017), and understanding the extent to which a stress affects
a whole plant or not will improve the accuracy of detection
measurements.

The potential oak wilt diagnostic wavelengths demonstrate
possible mechanisms of plant disease response and fungal
infection. We found multiple spectral areas associated with
water content and canopy water content that were significantly
different even between oak wilt and drought affected plants in
asymptomatic leaves (952, 970, 1000 and 1210 nm; Curran
1989, Williams and Norris 1987, Pontius et al. 2005b, Kumar
2007), and that these expanded to include water absorbance
features in the shortwave infrared in symptomatic leaves (1460,
1930 nm; Curran 1989) as well as reflectance regions known
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to correlate with leaf water potential (1470, 1840–1890 nm;
Cotrozzi et al. 2017). While we may have expected water
content changes to be quite similar between drought and oak
wilt, or more exaggerated in drought, the oak wilt fungus
causes cell rupture in the leaves, altering the leaf cellular
structure (800–820, 1120, 1210, 1490, 1820 and 2360 nm,
Curran 1989) and permanently altering the water availability
in the leaves (Wilson 2005). In symptomatic leaves in oak
wilt treatments, we observed much greater declines in stomatal
conductance than in drought-treated plants, even when canopy
wilting was not prevalent.

The potential oak wilt diagnostic wavelengths show that the
underlying causes of photosynthetic decline are likely quite
complex and the result of both hydraulic dysfunction and further
plant-fungal interactions. We found that there were multiple
regions that are associated with leaf starch and sugar content
(970, 990, 1210, 1460, 1490, 1780, 1900 and 2000 nm;
Curran 1989). Starch is a main product of photosynthesis
(Zeeman et al. 2004) and differences in starch content may
simply be a signal of declining photosynthetic machinery. We
found oak wilt-specific reflectance features at several wave-
lengths associated with Rubisco and leaf nitrogen (1670, 1930,
2060, 2220 and 2360 nm; Curran 1989, Elvidge 1990, Serbin
et al. 2012). However, leaf starch content has also been shown
to decline in water-stressed seedlings, when starch hydrolysis
may be used for osmotic adjustment (Épron and Dreyer 1996).
The fungus can also directly reduce sugar content through
consumption (Oliva et al. 2014) or indirectly cause a reduction
in non-structural carbohydrates due to ethylene production,
which triggers the process of leaf senescence and abscission
(Wilson 2005), which would include nutrient recycling, pigment
breakdown and metabolisms of sugars and lipids (Iqbal et al.
2017). We did observe higher rates of leaf abscission in both
fungal diseases than in the drought treatment. Foliar fungal
infections have been observed to increase volatile isoprene
emissions in oaks (Copolovici et al. 2014), which are highly
correlated with the PRI (Gamon et al. 1990, 1997, Peñuelas
et al. 2013), but we observed no significant differences in PRI
associated with the oak wilt vascular infection. With calibration
to a suite of physiological processes, spectroscopic tools may
be used to monitor fungal infections and host responses, and
understand the mechanisms of decline in infected trees.

We can detect oak wilt with a single model, regardless of
the species measured, even when symptom progression and
disease response is different. We found that we could classify
species with virtually no error (>99% in asymptomatic leaves),
showing that there are strong detectable spectral differences.
We also found there were differences between the species spe-
cific models of oak wilt, and found significant species differences
in reflectance at oak wilt-specific wavelengths, yet we did not
find consistently better oak wilt classification within one species
model than in the joint model. The photosynthetic and stomatal

conductance responses we observed to oak wilt stress were not
significantly different among species. The differences in species
model performance may be due to the differences in disease
progression: oak wilt symptoms advanced more rapidly in Q.
ellipsoidalis, and, like other red oaks, fungal conidia are expected
to spread more rapidly throughout the vascular system of the
plant because of anatomical differences between species and
because red oaks have less effective tylosis formation and thus
compartmentalization (Jacobi and MacDonald 1980, Juzwik et
al. 2011). In asymptomatic leaves of Q. ellipsoidalis, reflectance
differences between oak wilt and other treatments were greater
and oak wilt classification was significantly higher than in Q.
macrocarpa. This may be because of the rapid impact of the
infection on the whole plant, even in otherwise healthy leaves,
while Q. macrocarpa more successfully compartmentalizes the
disease. We had greater rates of success of oak wilt classi-
fication in Q. macrocarpa in symptomatic leaves, yet overall,
reflectance values in each species were very similar in mag-
nitude in symptomatic leaves. Moderate to advanced disease
symptoms may overwhelm species differences in some ways:
we found that we were able to classify species from spectra
less well in symptomatic leaves (or canopies which included
symptomatic leaves). We also observed declines in model per-
formance in weekly data subsets after canopy oak wilt symptom
prevalence exceeded moderate values (greater than 23%),
perhaps due to the loss of signal within completely necrotic
tissue. In our study, models may have become overwhelmed with
the signal of dead tissue over oak wilt infected and dying tissue,
and this effect would have been more pronounced because of
the rapid symptom onset in Q. ellipsoidalis.

Conclusions

As climate change causes increased plant stress and vulnera-
bility to present and newly introduced pathogens, explicitly and
accurately diagnosing manageable diseases across landscapes
using remote sensing tools is increasingly important. We show
that we can use spectroscopic tools to accurately diagnose a
disease from other possible stresses present in common co-
occurring forest species. This diagnosis is possible due to spec-
tral signals that are correlated with physiological changes due
to plant response or plant–fungal interactions. Heterogeneity in
symptom appearance in the canopy, possibly due to disease
compartmentalization within the plant, can reduce the spectral
signal. Measurements of explicitly symptomatic tissue, or whole-
tree canopies with a high prevalence of symptoms, increase
detection, making remote spectral detection of disease a viable
tool at a stand or forest scale.

Supplementary Data

Supplementary Data for this article are available at Tree Physiol-
ogy Online.
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