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Abstract

With the advancement of spatial analysis and remote sensing technology, potentially devastating 
forest pathogens can be managed through spatial modeling. This study used Maxent, a presence-
only species-distribution model, to map the potential probability distribution of the invasive forest 
pathogen oak wilt (Bretziella fagacearum) in eastern and southeastern Minnesota. The model re-
lated oak wilt occurrence data to environmental variables including climate, topography, land 
cover, soil, and population density. Results showed that areas with the highest probability of oak 
wilt occur within and surrounding the Minneapolis/St. Paul metropolitan area. The jackknife test 
of variable importance indicated land cover and soil type as important variables contributing to 
the prediction of the distribution. Multiple methods of analysis showed that the model performed 
better than random at predicting the occurrence of oak wilt. This study shows Maxent’s potential 
as an accurate tool in the early detection and management of forest diseases.

Keywords:  oak wilt, Bretziella fagacearum, Minnesota, species-distribution models, SDMs, Maxent, maximum entropy, GIS, geo-
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Introduction
Forest Pathogens and Oak Wilt
Although most forest pathogens are innocuous and 
do not cause serious or long-term damage to eco-
systems, others have the ability to devastate land-
scapes. Globalization has increased travel and trade 
between and within countries creating new avenues 
for long-distance dispersal of invasive forests patho-
gens. Even locally, leisure and recreation activities, 
such as hiking and the transportation of firewood, 
have been shown to carry pathogens short distances 
to new locations (Gibbs and French 1980, Cushman 
and Meentemeyer 2008). Change in land use through 

deforestation, expansion of agricultural fields, draining 
of wetlands, urban sprawl, and landscape changes be-
cause of suppression of natural events such as fire can 
affect the prevalence of forest pathogens (King et  al. 
2006, Meentemeyer et  al. 2008). Human-induced 
climate change affects the susceptibility of forests 
through shifting ranges of the pathogen or host species, 
adaptive reproductive responses, altering habitat and 
ecological community of a region, and social and eco-
nomic responses to climate change (Desprez-Loustau 
et al. 2006, Wilkinson et al. 2011, Venette 2013). All 
of this results in forest fragmentation and loss of forest 
heterogeneity that allow forest pathogens to thrive.

D
ow

nloaded from
 https://academ

ic.oup.com
/jof/article/117/6/579/5582657 by Texas A&M

 U
niversity C

ollege Station user on 16 January 2023



580 Journal of Forestry, 2019, Vol. 117, No. 6

Oak wilt is an infectious forest disease caused by 
Ascomycetes fungus (Bretziella fagacearum), which has 
reached serious levels in Texas and the Upper Midwest. 
The pathogen targets primarily oaks but also many trees 
found in the family Fagaceae that have shown suscep-
tibility (Appel 2009, Harrington 2013). Within the oak 
family, susceptibility varies among species. White oaks 
(Sect. Quercus) have the ability to fight off the pathogen, 
whereas red oaks (Sect. Lobatae) are easily infected, 
most dying from the pathogen within months. Live oaks 
(Sect. Protobalanus), the predominant group in Texas, 
have susceptibility between that of red and white oaks 
(Gibbs and French 1980, Appel 2009). Oak wilt enters a 
healthy tree through a fresh wound in the bark where it 
lodges in the xylem tissue. As the pathogen multiplies, it 
chokes the xylem and prevents water from reaching the 
crown of the tree resulting in the eponymous wilt of the 
tree (Gibbs and French 1980).

Transmission of oak wilt from an infected to a 
healthy oak occurs either overland or underground. 
Overland infection requires a spore mat to form on a 
red oak, a fresh wound to the xylem tissue to be found 
on a healthy oak, and an insect vector to carry spores 
from the infected tree to the wound in the healthy oak 
(Juzwik et al. 1985, Harrington 2013). Underground 
spread takes place via root grafting and is the most 
common form of spread in Minnesota occurring most 
commonly among red oaks (Gibbs and French 1980). 
Regardless of the route of transmission, oak wilt is a 
rapidly spreading and serious forest disease.

As of 2016, 32 counties in Minnesota have had a con-
firmed case of oak wilt (USDA 2017). This forest pathogen 
has the potential to rapidly alter the makeup of forests. 
With the advancement in technology, remote sensing im-
agery, and the open availability of data comes the ability 
to accurately predict the occurrence and potential dis-
tribution of forest pathogens using species-distribution 
models (SDMs). The use of these technologies can assist 
in the detection, management, and eradication of destruc-
tive forest disease and minimize their impacts.

SDMs
SDMs are important tools in the fields of ecology, bio-
geography, conservation biology, and, more recently, 
climate-change studies in understanding how the dis-
tribution of a species is dictated by local environmental 
factors (Guisan et al. 2005). SDMs create a distribu-
tion of a species by relating known species occurrence 
locations with environmental variables (Guisan and 
Zimmermann 2000).

Scientists use SDMs to understand the distribution 
of a species or predict where the species may occur. 
Most often, SDMs are used to understand or describe 
the distribution of one species (Ahmed et al. 2015). By 
using SDMs in such a way, scientists can better under-
stand which variables are associated with the presence 
or absence of a species, information that can prove 
particularly beneficial in studies on rare or endangered 
species (Wilson et al. 2011, Maria Teresa et al. 2014, 
Morinha et al. 2017). In addition, with the continued 
acceleration of climate change, SDMs are becoming 
popular tools in studying the effects that shifting tem-
perature and precipitation will have on a species dis-
tribution (Venette 2013, Ikegami and Jenkins 2018).

This research used the Maxent SDM to map the 
probability distribution of oak wilt in east central and 
southeastern Minnesota (Figure 1). Maxent is machine-
learning software that requires only presence data to 
create a robust model of distribution and has quickly 
become a favorite tool among SDM users (Ahmed et al. 
2015). It is easy to download, simple to use, and effi-
cient, allows the user to alter parameters, and calculates 
statistical tests. Maxent creates a probability distribu-
tion of a species occurrence based on the principle of 
maximum entropy because it agrees with what is known 
and does not assume anything that is not known. The 
algorithm uses attempts to create a statistical model 
that recreates the distribution of the training data by 
assuming a uniform distribution throughout the study 
area, then altering that distribution only as much as 
constraints, statistical values found using values of 

Management and Policy Implications

Forest diseases and pathogens can cause significant damage to an ecosystem. Understanding where they 
are going to occur and what variables are important in their distribution can stave off the detrimental effects 
they have on established and at risk ecosystems. Modeling allows researchers to determine the extent of the 
disease, which variables lead to the increase in infection centers, and predict the distribution of the disease. This 
study shows Maxent as a reliable tool forest managers and scientists can use to monitor the susceptibility of a 
wooded area to a specific forest pathogen. Through modeling, they can save time and money by highlighting 
those areas that are more likely to harbor a pathogen and focusing on-ground monitoring and detection efforts 
to these areas.
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environmental variables at the known occurrence loca-
tions, allow (Phillips et al. 2006).

This research demonstrates how the potential dis-
tribution of oak wilt in east central and southeastern 
Minnesota can be mapped using Maxent and deter-
mines which variables were important in the creation 
of that distribution to assist forest managers in the 
state to better predict the future spread of oak wilt.

Methods
Creation of a probability distribution of oak wilt in 
Minnesota using Maxent first required the creation of 

an oak wilt occurrence database and selection of the ap-
propriate environmental variables. The model was then 
set up and run with the appropriate parameters followed 
by model evaluation using the area under the receiver 
operating characteristic curve (AUC) and the true skill 
statistic (TSS) (Allouche et al. 2006, Phillips et al. 2006).

Occurrence and Environmental Data
Occurrence Data
To create a database of oak wilt occurrences, con-
firmed oak wilt locations between 2007 and 2016 
were obtained from the Minnesota Department of 

Figure 1. Study area consisting of 33 counties in east central and southeastern Minnesota.
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Natural Resources (DNR) and Three Rivers Park 
District (TRPD) and combined into one master dataset 
(n = 460) (Figure 2). Each organization gathered oak 
wilt data by different means. The MN DNR data came 
from on-the-ground observations in communities that 
applied and received funding from the DNR for oak 
wilt management. TRPD data came from aerial sur-
veys that were ground truthed for positive oak wilt 
presence.

Climate Data
Previous studies have shown that climate variables, 
specifically temperature and precipitation, affect the 
presence of certain forest pathogens including oak wilt 
(Meentemeyer et al. 2004, Juzwik 2009). The climate 
data used came from 30-year (1981–2010) normal cli-
mate datasets from the PRISM Climate Group (http://
prism.oregonstate.edu/) including average annual pre-
cipitation, average temperature for the two coldest 

months (December and February to January were not 
used because of data-integrity issues), and average tem-
peratures of the three hottest months (June, July, and 
August). Each climate variable came in a nationwide 
raster dataset with a resolution of 800 m and clipped 
to the study area.

Topography Data
This research used a digital elevation model (DEM) of 
Minnesota: statewide, 1:24,000, Level 2, raster that 
was created from a United States Geological Survey 
(USGS) DEM as the elevation layer (https://gisdata.
mn.gov/dataset/elev-30m-digital-elevation-model). 
With a standardized grid size of 30 m and a vertical 
resolution of 10 m, the resolution was a perfect fit for 
use in this research. Using the corresponding tools in 
ArcMap, slope and aspect layers were both derived 
from the DEM raster layer.

Figure 2. Oak wilt occurrence locations between 2007 and 2016 obtained from the Minnesota Department of Natural 
Resources and Three Rivers Park District.
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Land-cover Data
The Minnesota Land Cover 1991–92 map, a product 
of the USGS Gap Analysis program (https://gisdata.
mn.gov/dataset/biota-landcover-gap), which used sat-
ellite imagery to produce detailed vegetation maps 
with a resolution of 30 m, was used for this research. 
The data used divide the land cover in Minnesota into 
49 classes, 40 of which are found in the study area. The 
last accuracy assessment of this data took place be-
tween 1995 and 2000. Although 20 years have passed 
since the last accuracy assessment, and much develop-
ment in the metropolitan areas has occurred, the level 
of detail found in this layer made it the ideal choice for 
this research.

Soil Types
Soil suborder data were acquired through the 
Natural Resources Conservation Service’s Soil 
Survey Geographic (SSURGO) database (https://
websoilsurvey.nrcs.usda.gov/). Included in the down-
load were dozens of tables of soil data that link to the 
spatial element via a map unit key. Using this key, the 
component table was joined to the shapefile to create 
a map with an attribute table that included soil-order 
information.

Population Density
Population density was acquired from the Gridded 
Population of the World (GWP), Population Density 
version 4.10 for the year 2015 from the Socioeconomic 
Data and Applications Center (SEDAC) (http://sedac.
ciesin.columbia.edu/). This layer showed the estimated 
number of people per square kilometer using national 
census numbers. Although the resolution for these data 
is coarse, SEDAC provides the only gridded (raster) 
datasets on population counts and density that is not 
constrained to political boundaries.

Maxent Setup
This research used Maxent software version 3.4.0 
(https://biodiversityinformatics.amnh.org/open_
source/Maxent/). The oak wilt occurrence data file was 
uploaded into the Samples pane of Maxent and the 
ASCII variable files into the Environmental variables 
pane. Data type was selected from the drop-down 
menu for each environmental variable: aspect, Gap 
Analysis Program  (GAP), and soil types were desig-
nated as categorical, and the remaining variables as 
continuous.

Overfitting is a common issue with Maxent but one 
that can be controlled by altering specific parameters 

within the model. As stated before, Maxent uses a set 
of constraints to create a distribution, and overfitting 
occurs when the model adheres too closely to these 
values. Preventing this issue requires altering one of 
two parameters. First, increasing the regularization 
parameter will relax the constraints allowing for a 
greater range of values around the constraint. Second, 
and the method chosen for this research, the type of 
restriction can be chosen manually between linear, 
product, quadratic, threshold, and hinge features. The 
feature class chosen determines how constraints are 
calculated (Phillips et al. 2006). Hinge feature only was 
selected because research on the accuracy of models 
using specific feature classes showed hinge feature 
created the most accurate models without becoming 
overly complex and overfitting the occurrence loca-
tions (Phillips and Dudik 2008).

Within the settings of Maxent, various parameters 
can be changed to customize the model to fit the species 
and data being modeled. This research used random 
seed to set aside a random 25 percent of the occurrence 
data for testing.

Model Evaluation
The best method for evaluating a Maxent distribution 
from presence-only data is still being debated (Gusian 
et al. 2005, Elith and Leathwick 2009). This research 
used multiple methods to evaluate the performance of 
the model. Maxent produced a receiver operating char-
acteristics (ROC) AUC and an analysis of omission/
commission to evaluate the model. In addition, the 
TSS was used as an independent measure of validity. 
The TSS is calculated from the model’s proportion of 
accurately predicted presences and the proportion of 
accurately predicted absences with a value ranging 
between –1, indicating the results are no better than 
a random model, and +1, indicating a perfect model 
(Allouche et al. 2006).

Results
Potential Distribution
The areas with the highest probability of oak wilt 
are found in the center of the study area near the 
Minneapolis–Saint Paul metropolitan area and to 
the north and west near the Mississippi River. The 
model placed the highest probability areas mainly sur-
rounding known occurrence locations (Figure 3). Very 
high probabilities can be found in nearly half of the 
counties within the study area. Hennepin, Ramsey, and 
Anoka counties have significant areas classified as very 
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high or high followed closely by Sherburne, Isanti, and 
Washington counties. Counties in the far north or far 
south of the study area show very low probabilities 
of oak wilt distribution with the exception of Pine 
County along its border with Wisconsin. The Maxent 
model also predicted high probability for regions in 
southern Dakota county, northern Rice county, and 
western Goodhue county, although they have few oc-
currence locations.

Variable Importance
Variable contribution shows how much the model re-
lied on each variable to create the final output (Table 1).  
The GAP-derived vegetation cover variable contrib-
uted the most (37.1 percent) to the model with soil type 
(23.0 percent) and population density (22.2 percent) 
rounding out the top three environmental variables. 
Of the 12 variables used in the study, nine contributed 

Table 1. Percentage contribution of each variable to 
the creation of the final Maxent model.

Variable Percentage contribution

GAP 37.1
Soil type 23.0
Population density 22.2
Elevation 5.3
Annual precipitation 4.3
Dec min temp 2.3
Jun max temp 2.2
Aspect 1.4
Feb min temp 0.9
Slope 0.5
Jul max temp 0.4
Aug max temp 0.3

Note: Higher percentages mean that the model placed 
greater weight on those variables when creating the distri-
bution model.

Figure 3. Reclassified Maxent output into five categories representing the probability of oak wilt occurrence using Jenks 
Natural Breaks Classification.
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only 17.6 percent. It is important to note that the table 
of variable importance represents only the model cre-
ated and that alternate models using the same data will 
generate a table with different percentages.

The jackknife test of variable importance shows the 
amount of useful and unique information within each 
variable. To create the plot, Maxent runs three models: 
one with all variables, one with only a single variable, 
and one with all but one variable. The red bars indicate 
the usefulness of the information within each variable 
toward the creation of the model, and the blue bar in-
dicates the uniqueness of the information within the 
variable. In the plot created by this model (Figure 4), 
the vegetation cover variable has both the longest red 
bar and the shortest blue bar, indicating this variable 
has the most useful and unique information of all the 
variables. Soil type had the second greatest uniqueness 
of information. Other highly useful variables include 
soil types, elevation, and July maximum temperature.

Response curves are yet another option to study the 
effects of each environmental variable on the model. 
The curves, for continuous data, and bar graphs, for 
categorical data, created for this thesis are based on 
the model using only that variable and represent how 
the probability of oak wilt differs when that variable 
changes. The plot for GAP (Figure 5) shows that areas 
with land cover primarily made up of northern pin 
oak and bur/white oak almost guarantee the presence 
of oak wilt. Low-intensity urban and red oak land 
cover resulted in about an 80 percent chance of oak 

wilt occurrence. Interestingly, areas in the study area 
covered in jack pine and red/white pine–deciduous mix 
also had an almost 100 percent probability of oak wilt 
presence. Two soil suborders stand out above the rest in 
terms of probability of oak wilt occurrence (Figure 6).  
The presence of Psamments and Hemists soils will re-
sult in an approximately 88 percent and 81 percent 
chance of oak wilt occurrence respectively.

Model Evaluation
The AUC value for this mode (0.926) indicates that the 
model fit the training data much better than average. 
A perfect model would have an AUC value of 1 rep-
resented by a right angle on the graph, indicating all 
known occurrence locations were labeled as such in 
the model, and no areas absent of oak wilt were la-
beled as present by the model. The high AUC of this 
model shows that Maxent did far better than random 
in creating a model to represent oak wilt occurrence 
locations (Figure 7). The TSS value for this model 
was 0.748, indicating a model statistically better than 
random.

Discussion
The results indicate that the Maxent approach is cap-
able of creating a potential distribution model of oak 
wilt in Minnesota. However, the results are simply 
based on the data the model was given, which does not 
ensure that the results are ecologically meaningful. To 

Figure 4. Jackknife test of variable importance. The top bar for each variable indicates the model run with only that variable, 
while the bottom bar indicates the model run excluding that variable. High red bars and low blue bars indicate unique or 
important variables to the model.
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understand how well the model predicted distribution 
based on ecological terms, we compared the variables 
deemed most important by the model (GAP-derived 
land cover, soil type, and population density) with re-
search that has been completed on the subject.

Environmental variables must be chosen carefully 
because Maxent models create the best output pos-
sible regardless of the quality of the variables. Careful 
consideration of which variables to use is necessary, 
as irrelevant or unnecessary variables may change 
the accuracy of the variables or display variables as 

important when, in reality, they are not (Elith and 
Leathwick 2009). Even when caution is taken, under-
standing the important variables in the Maxent output 
leads to a greater understanding of the model and its 
performance.

Spread of Oak Wilt
Oak wilt can spread in one of two ways: above ground 
via insect vector or underground through root grafting. 
Overland spread requires a spore mat to form on an in-
fected oak, a sap beetle to visit the spore mat and pick 

Figure 6. Response curve for soil subtypes. The presence of Psamments (5) and Hemists (6) result in a greater probability 
of oak wilt occurrence.

Figure 5. Response curve for GAP-derived land cover. The presence of northern pin oak (35), bur/white oak (21), red oak 
(22), low-intensity urban (2), and jack pine (11) results in a greater probability of oak wilt occurrence.
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up spores, and the insect to visit a fresh wound on a 
healthy oak tree (Juzwik et  al. 2011). Root grafting 
is the creation of a shared root system. The oak wilt 
pathogen can spread rapidly through the shared xylem 
tissue found within these shared roots with the possi-
bility of infecting a large number of trees in a single 
year (Appel 2009, Juzwik et al. 2011). Land cover, soil 
type, and population density may all contribute to the 
establishment and spread of oak wilt, as explained 
below.

Land Cover and Oak Wilt
Forest composition is thought to determine whether 
oak wilt is capable of maintaining a presence in an 
area. Forests with high diversity of plant species may 
have lower incidences of oak wilt simply because the 
distance separating oak trees inhibits the spread of the 
pathogen regardless of mode of transmission (Gibbs 
and French 1980, MacDonald et al. 2009). Conversely, 
a more homogenous forest with many oaks growing 
close together is more likely to sustain an oak wilt in-
fection (Juzwik 2009).

While an oak-only input layer would have been best 
to use, the best available option at the time of our re-
search was to use the GAP-derived land-cover layer 
selecting several categories where oak was known to 
be present: bur/white oak, northern pin oak, red oak, 
and white/red oak, as well as upland conifer–deciduous 
and upland deciduous with oak species (Figure 8). The 
model thus uses information about where there is a 

high probability of the presence of oak trees, and this 
was the layer that had the largest contribution to the 
model, but was not the exclusive factor for oak wilt to 
be present. The presence of northern pin oak had the 
greatest increase in probability of oak wilt occurrence, 
whereas the presence of bur or white oak and red oak 
categories ranked lower. Certain soil types and prox-
imity to humans were also important. Future studies 
would benefit from an accurate oak presence layer, 
which could be used to determine whether any other 
factors apart from those found in this study affect the 
distribution of oak wilt within oak stands.

In the model output, some areas, most notably in 
the counties of far southeastern Minnesota including 
Houston, Winona, and Wabasha Counties, have a high 
presence of oak (Figure 8) but low probability of oak 
wilt as shown in Figure 3. Conversely, there are some 
areas where oaks were not common, but oak wilt is 
predicted to occur based on other variables including 
areas of Pine County along its border with Wisconsin 
and near Faribault and along the Cannon River in Rice 
County.

Aboveground spread of oak wilt depends on the 
variety of trees found in a forest, but it also can de-
pend on the different groups of oaks found in a forest. 
Oaks found in the white oak and red oak sections have 
varying susceptibility to oak wilt. White oaks, including 
bur oaks, are less vulnerable to oak wilt than other spe-
cies with highly resistant white oaks such as Quercus 
alba showing dieback of a few branches a year, taking 

Figure 7. Receiver operating characteristic curve created for the Maxent model. The curves represent the training and test 
data. AUC, area under the receiver operating characteristic curve.
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a decade to die, if at all (Juzwik et al. 2011). On the 
other hand, northern pin and red oaks are significantly 
more susceptible and will die within the same year 
they are infected (Harrington 2013). Differences in 
susceptibility are thought to be due to anatomical and 
physiological differences between the species. Within 
infected white oaks, the pathogen, once it enters the 
xylem, is unable to move laterally and is often soon 
surrounded by a new layer of xylem tissue (Jacobi and 
MacDonald 1980). These two events essentially isolate 
the pathogen and prevent it from spreading. Northern 

pin and red oaks do not have such advantages, and the 
pathogen is free to spread rapidly both laterally and 
vertically throughout the tree’s vascular system.

Underground, root grafting most commonly oc-
curs among trees of similar species. Among oaks, roots 
can graft among and between species. Oaks of similar 
species or in the same section of the genus tend to 
graft more commonly than oaks of different species 
or sections (Juzwik 2009). In areas where oak wilt is 
present but at low levels, root grafting plays a role in 
its spread; however, the diversity of the forest and the 

Figure 8. Location of land-cover containing oaks derived from GAP land-cover data. Adapted from data from the MN 
DNR—Division of Forestry.
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relative isolation of oak trees to small groupings pre-
vent the pathogen from spreading widely (MacDonald 
et  al. 2009). The frequency of root grafting also dif-
fers among oak species in Minnesota. Grafting is not 
common in bur oaks but is far more common in red 
oaks, with one study showing all northern pin oaks 
within 15 meters having grafted together (Parmeter 
et al. 1956).

The GAP-derived land-cover variable also showed 
low-intensity urban and jack pine land covers as also 
having high levels of oak wilt probability. In Minnesota, 
large numbers of oak trees can be found in the re-
gions labeled as low-intensity urban, and the reason 
for the large oak wilt probability will be discussed in 
the Population Density and Oak Wilt section. Jack 
pine, on the other hand, is an interesting anomaly. The 
GAP-derived land-cover layer used in this study shows 
that jack pine is located in only a few counties in the 
northern range of the study area. Thirty-seven of the 
460 oak wilt occurrence points used in this study were 
found in approximately a 2-square-mile area of jack 
pine in northern Pine County on the Wisconsin border. 
The high density of oak wilt occurrence so far from 
other major oak wilt infection centers may be because 
of a local introduction into a small oak stand, spread 
from infected trees across the border in Wisconsin, or 
simply because of a sampling bias.

Although land-cover was the largest contributor 
and considered the most important variable in the 
Maxent mode, it is by no means the only indicator of 
oak wilt presence. Other variables such as soil type and 
population density contributed significantly to the for-
mation of the model.

Soil Type and Oak Wilt
The response curves for soils show two suborders 
whose presence significantly increase the chances of 
oak wilt occurring. The existence of Psamments re-
sults in an approximately 88 percent probability of 
oak wilt, whereas the occurrence of Hemists results in 
an approximately 82 percent likelihood of oak wilt. 
In the study area, Psamments can be found along few 
rivers and in a large area north of the Minneapolis–
St. Paul metropolitan area known as the Anoka Sand 
Plain subsection of the Minnesota and Northeast 
Iowa Morainal section of the Ecological Classification 
System used by the Minnesota DNR, whereas Hemists 
can be found throughout Hennepin County and in 
pockets of northern Pine County. (Figure 9). These lo-
cations also correspond to areas of higher probability 
of oak wilt occurrence.

Psamments have a sandy texture, consist of less 
than 35 percent rock fragments, and have a low water-
holding potential (USDA 1999). Hemists are wet 
soils with an intermediate level of decomposing ma-
terial with a bulk density below 0.3 g/cm3, making it 
a very light and porous substrate (USDA 1999). The 
sandy characteristics of Psamments and the lightness 
of Hemists make them ideal substrates for roots to 
reach out and graft with the roots of other trees. The 
distance and frequency at which roots graft depend 
heavily on soil composition and texture. Studies have 
shown that the distance roots are able to reach out, 
and the amount of grafting occurring increases from 
heavy and dense to light and sandy soils (Anderson 
and Anderson 1963, Bruhn et al. 1991). The expansion 
of oak wilt because of grafted roots varies between re-
gions. In Michigan’s Upper Peninsula oak wilt, expan-
sion through root grafting has been shown to be as 
much as 12 meters per year, in Minnesota it can range 
from 1.9 to 7.6 meters per year, whereas in Texas oak 
wilt can spread up to 50 meters per year (Bruhn et al. 
1991, Appel 2009, Juzwik 2009). Overall presence of 
very sandy or organically rich porous soils may facili-
tate the spread of oak wilt.

Population Density and Oak Wilt
Human population density may not, at first glance, 
seem as important a variable when determining the 
distribution of most forest pathogens. However, as 
stated before, humans can promote the spread of forest 
pathogens through trade, travel, recreation, and land-
use change.

This research showed, through the population 
density response curve, that the probability of oak wilt 
was high and steady at moderate population densities 
with a rapid and continuous decline of probability 
when population density reached around 1,700 people 
per square kilometer. This corresponds to the response 
curve for land cover that shows that low-intensity 
urban land cover had a high probability of oak wilt 
presence (about 79 percent), whereas high-intensity 
urban areas had a very low probability of oak wilt 
presence (about 14 percent).

Population density plays a role in the overland 
spread of oak wilt. In order for a healthy tree to be-
come infected, a fresh wound has to be present. In 
populated areas, that damage is often caused by human 
activity. Juzwik et al. (1985) gathered observations of 
tree pruning and wounding between 1953 and 1979. 
They demonstrated how the pruning or wounding of 
trees between May and June would result in greater 
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occurrences of oak wilt, whereas the swift application 
of wound dressings prevented infection. Downing et al. 
(2009) used classification tree analysis to predict the 
distribution of oak wilt and discovered population and 
population change as important factors, although the 
authors did not discuss reasoning for its importance.

Conclusion
Some forest pathogens have the ability to alter a land-
scape quickly. SDMs have the potential to limit the 
effects of forest pathogens if they are used in the detec-
tion and monitoring of these pathogens. The purpose 
of this research was to test a popular SDM, Maxent, 
in its ability to predict the potential distribution of an 
invasive forest pathogen. Using oak wilt presence lo-
cations and a set of 11 environmental variables, the 
potential distribution of oak wilt was successfully 
modeled in east central and southeastern Minnesota 
with Maxent.

In addition to creating a potential distribution, the 
model was also able to highlight areas of concern, 
including locations that currently have very little oak wilt 
but have a highly suitable habitat. One such area is south 
of the Minneapolis–St. Paul metropolitan area in southern 
Dakota and northern Rice counties where a line of high-
probability habitat can be seen running along the Cannon 
River, but only one oak wilt occurrence location was in the 
area. Highlighting areas of concern is where Maxent can 
do the most good in bringing attention to these locations 
to assist in monitoring and managing forest pathogens.
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