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Abstract 29 

The oak wilt disease caused by the invasive fungal pathogen Bretziella fagacearum is one of the greatest 30 

threats to oak-dominated forests across the Eastern United States. Accurate detection and monitoring 31 

over large areas are necessary for management activities to effectively mitigate and prevent the spread 32 

of oak wilt. Canopy spectral reflectance contains both phylogenetic and physiological information across 33 

the visible near-infrared (VNIR) and short-wave infrared (SWIR) ranges that can be used to identify 34 

diseased red oaks. We develop partial least square discriminant analysis (PLS-DA) models using airborne 35 

hyperspectral reflectance to detect canopies at early stages of disease development and assess the 36 

importance of VNIR, SWIR, phylogeny, and physiology for oak wilt detection. We achieve high accuracy 37 

through a three-step phylogenetic process in which we first distinguish oaks from other species (90% 38 

accuracy), then red oaks from white oaks (Quercus macrocarpa) (93% accuracy), and, lastly, infected from 39 

non-infected trees (80% accuracy). Including SWIR wavelengths increased model accuracy by ca. 20% 40 

relative to models based on VIS-NIR wavelengths alone; using a phylogenetic approach also increased 41 

model accuracy by ca. 20% over a single-step classification. SWIR wavelengths include spectral 42 

information important in differentiating red oaks from other species and in distinguishing diseased red 43 

oaks from healthy red oaks. We determined the most important wavelengths to identify oak species, red 44 

oaks, and diseased red oaks. We also demonstrated that several multispectral indices associated with 45 

physiological decline can detect differences between healthy and diseased trees. The wavelengths in 46 

these indices also tended to be among the most important wavelengths for disease detection within PLS-47 

DA models, indicating a convergence of the methods. Indices were most significant for detecting oak wilt 48 

during late August, especially those associated with canopy photosynthetic activity and water status. Our 49 

study suggests that coupling phylogenetics, physiology, and canopy spectral reflectance provides an 50 

interdisciplinary and comprehensive approach that enables detection of forest diseases at large scales 51 
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even at early disease stages. These results have potential for direct application by forest managers for 52 

early detection to initiate actions to mitigate the disease and prevent pathogen spread. 53 

Keywords: Oak wilt, photosynthetic decline, spectral reflectance, disease response, water content, 54 

remote sensing, physiology. 55 

1. Introduction 56 

Invasive tree pathogens are a major threat to forest diversity and function (Evans et al., 2010; Hulcr 57 

and Dunn, 2011). The damage caused by invasive species can have negative consequences for ecosystem 58 

processes and services, including air and water quality maintenance, nutrient and carbon cycling, wood 59 

and food provision, and climate regulation (Cavender-Bares et al., 2019; Díaz et al., 2019; Waller et al., 60 

2020). In North American forests, invasive pathogens and pests that infect trees have had devastating 61 

impacts over the last century due to multiple factors, including global trade and climate change (Bergot 62 

et al., 2004; Liebhold et al., 1995; Sturrock et al., 2011), leading to the loss or potential loss of multiple 63 

foundational canopy species such as American chestnut (Castanea dentata), elm and ash species (Ulmus 64 

and Fraxinus spp.), and eastern hemlock (Tsuga canadiensis).  65 

The oak genus (Quercus) is under threat from multiple pathogens and is of critical management 66 

interest due to its dominance in temperate forests of the Eastern US (Johnson et al., 2019). Oaks rank 67 

among the most diverse and important tree lineages in the United States, with 91 oak species comprising 68 

nearly 30% of biomass in US temperate forests (Cavender‐Bares, 2019). Among the pathogens affecting 69 

oaks, oak wilt caused by the fungus Bretziella fagacearum (de Beer et al., 2017) is considered one of the 70 

most destructive threat to oaks (Appel, 1995; Haight et al., 2011; Wilson and Lindsey, 2005). The oak wilt 71 

fungus is spread below-ground from diseased trees to neighboring oaks through networks of grafted 72 

roots, thus forming centers (i.e., pockets or foci) of diseased oaks. The pathogen is also transmitted above-73 
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ground by nitidulid beetles (family Nitidulidae) and oak bark beetles (Pityophthorus spp) (Gibbs and French 74 

1980).  Multiple species of nitidulid beetles are attracted to spore-producing fungal mats that form on 75 

branches and main stems of recently wilted red oaks (Gibbs and French, 1980; Juzwik et al., 2011; Juzwik 76 

and French, 1983). On a land parcel to larger scale, oak wilt can be most effectively controlled when newly 77 

established centers are detected and appropriately treated (Juzwik et al., 2011; Koch et al., 2010). This 78 

prevents spread or minimizes disease intensification within a stand or the surrounding landscape.  Surveys 79 

of large, forested areas to identify suspect diseased trees are time-intensive and require expert training. 80 

Such surveys are needed for landscape level oak wilt management efforts. Current operational 81 

surveillance of forest landscapes in the Upper Midwest USA utilize aerial surveys conducted with fixed 82 

wing aircraft, helicopters, and UAVs (Juzwik, 2009). Other airborne imaging spectrometry offers potential 83 

for early and accurate detection of oak wilt at landscape scales. 84 

Canopy spectral reflectance can potentially be used to detect the physiological decline resulting from 85 

oak wilt fungus infection, and thus provide forest managers with a powerful tool. Airborne spectral 86 

reflectance and indices derived from reflectance spectra have successfully been used to detect other 87 

diseases and insect damage, such as Rapid Ohia Death, Emerald Ash Borer, bark beetles, and olive decline 88 

due to Xylella fastidiosa (Asner et al., 2018; Lausch et al., 2013; Pontius et al., 2008, 2005; Zarco-Tejada et 89 

al., 2018). To date, spectral indices for oak wilt detection have only been developed for oak seedlings 90 

(Fallon et al., 2020). Oaks respond to oak wilt infection by forming balloon-like structures called tyloses 91 

that occlude vessels within the xylem (Juzwik and Appel, 2016; Yadeta and Thomma, Bart, 2013). Vessel 92 

occlusion potentially blocks or slows the spread of the pathogen but also reduces water transport and 93 

limits canopy physiological performance by reducing transpiration and photosynthesis and potentially 94 

causing photoinhibition (Fallon et al., 2020; Juzwik and Appel, 2016; Struckmeyer et al., 1954). In red oak 95 

species, the fungus is rapidly spread internally in the transpiration stream through large diameter 96 

springwood vessels before tylose formation limits the pathogen’s spread. However, the tyloses formed 97 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2021. ; https://doi.org/10.1101/2021.01.17.427016doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.17.427016
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

contribute to the development of wilt symptoms. Blockage of vascular conduits by tyloses and metabolites 98 

produced by the fungus can lead to declines in transpiration and canopy water content as water supply 99 

to the canopy is significantly impaired. Changes in photosynthetic activity, foliar pigment pool sizes, and 100 

water status can be detected from canopy spectra (Hanavan et al., 2015; Pontius et al., 2005; Serbin et 101 

al., 2015). Fallon et al. (2020) identified several spectral wavelengths predictive of oak wilt in greenhouse 102 

seedlings that were related to leaf photosynthesis and water status. However, spectral properties of 103 

seedlings grown and measured under greenhouse conditions may differ significantly from adult trees 104 

grown under natural conditions due to growing conditions (e.g., sun, shade, humidity, and selective 105 

filtering of solar radiation by glasshouse materials), ontogeny, canopy position, degree of canopy 106 

emergence and other factors (Cavender-Bares et al., 2020; Fernandes et al., 2020; Ollinger, 2011). Hence, 107 

it is important to explicitly test the extent to which we can detect oak wilt in natural populations of adult 108 

trees using spectral reflectance. Identification of wavelengths associated with physiological function may 109 

enable detection of trees with incipient oak wilt that would otherwise remain undetected until oak wilt 110 

damage is more extensive. 111 

Oak lineages vary in susceptibility to oak wilt. Consequently, identification of oak subgenus is crucial 112 

to disease detection and prevention of spread. White oaks (Quercus subgenus Quercus), such as Q. alba 113 

and Q. macrocarpa, have narrower vessels (Cavender-Bares and Holbrook, 2001) and may produce tyloses 114 

efficiently (Cochard and Tyree, 1990) and in a more targeted manner in response to fungal infection (cf. 115 

Yadeta and Thomma, Bart, 2013). This slows the spread or compartmentalizes (cf. Shigo, 1984) the 116 

pathogen in infected white oak species (Jacobi and MacDonald, 1980; Koch et al., 2010; Schoenweiss, 117 

1959). Thus, symptoms of oak wilt in white oaks appear as scattered wilt or as dieback in the crown that 118 

develops over several to many years. In contrast, red oaks (Quercus subgenus Lobatae), such as Q. 119 

ellipsoidalis and Q. rubra, have larger diameter springwood vessels and tend to delay tylose formation in 120 

response to fungal infection, limiting their effectiveness in halting the spread of the fungus through the 121 
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vascular system (Juzwik and Appel, 2016; Struckmeyer et al., 1954; Yadeta and Thomma, Bart, 2013). Thus, 122 

crown wilt symptoms in red oaks progress rapidly and lead to tree death within the same season or early 123 

in the subsequent growing season.  The comparatively rapid mortality of red oaks, the common 124 

occurrence of intra-specific root grafts, and their common production of spore mats on recently wilted 125 

trees contribute to the importance of the red oak lineage in driving disease epidemics in the landscape 126 

(Menges and Loucks, 1984). Distinguishing red oaks from white oaks and other species across the 127 

landscape is therefore a critical step towards large-scale management of oak wilt. Leaf level and canopy-128 

level modeling approaches using spectroscopic data have previously been successful in distinguishing 129 

these lineages in experimental systems and manipulated forest communities (Cavender-Bares et al., 2016; 130 

Fallon et al., 2020; Williams et al., 2020). We thus anticipate that it is possible to detect red oaks across 131 

the landscape remotely by mapping lineage identities from classification algorithms using airborne 132 

spectroscopic imagery. Here, we outline a stepwise phylogenetic approach to remote sensing of oak wilt 133 

that entails: 1) identifying trees belonging to the oak genus, 2) identifying oaks belonging to the red oak 134 

subgenus, and 3) identifying red oaks infected with oak wilt.  135 

The goal of this study is to identify the optimal spectral range for early detection of oak wilt in red oak 136 

species (Q. ellipsoidalis and Q. rubra) across landscapes. We compare both full-range (visible, near-137 

infrared, shortwave infrared, VSWIR, 400-2500 nm) and VNIR (visible, near-infrared, 400-1000 nm) 138 

imaging spectroscopy for accuracy of oak wilt detection. While the VNIR is sensitive to photosynthetic 139 

activity and pigments (Curran et al., 1995; Gamon and Surfus, 1999; Ustin et al., 2009), use of the SWIR 140 

provides structural and phenotypic information (Townsend et al., 2013) that is strongly coupled with 141 

phylogenetic information (Meireles et al., 2020a) including mesophyll integrity, chemical composition, 142 

and canopy water content (Jacquemoud and Ustin, 2001; Ramirez et al., 2015; Romero et al., 2012; Sims 143 

and Gamon, 2003). A second objective is to test the efficacy of spectral vegetation indices known to be 144 

sensitive to physiological decline and disease response for their ability to differentiate healthy and 145 
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diseased trees (Pontius, 2014; Pontius 2020) (Table S1). Spectral indices can increase flexibility in the 146 

detection approach because they use only a handful of wavelengths and can be easily calculated across 147 

platforms as long as the same wavelengths are present  (Pontius, 2014). Spectroscopic models that require 148 

hundreds of wavelengths can have limited applicability across platforms when sensor measurement 149 

characteristics vary (Castaldi et al., 2018; Crucil et al., 2019; Nouri et al., 2017). 150 

 Here, we develop statistical models for oak wilt detection at the landscape scale using airborne 151 

spectroscopic imagery collected by two airborne systems (AISA Eagle and AVIRIS-NG) (Gholizadeh et al., 152 

2019; Hamlin et al., 2010) covering different ranges of wavelengths (VNIR and VSWIR, respectively). We 153 

coupled on-ground tree identification and status surveys with airborne imaging spectroscopy data to 154 

assess the capacity of airborne spectroscopy to detect oak wilt during early stages of disease development 155 

in a temperate, mixed hardwood forest that included adult red oak populations. In doing so, we tested 156 

the following hypotheses:  157 

i) Canopy reflectance from airborne spectroscopic imagery can accurately detect oak wilt 158 

infected trees in a natural forest landscape; 159 

ii) Detection accuracy increases by first distinguishing trees in the oak genus and red oak 160 

subgenus from other species based on spectral features specific to their phylogenetic lineage;  161 

iii) Spectral reflectance models including both VNIR and SWIR wavelengths exhibit increased 162 

accuracy relative to models including only VNIR wavelengths due to additional spectral 163 

information related to phylogenetic identity and plant structure; and  164 

iv) Spectral indices including wavelengths associated with photosynthetic activity, pigment 165 

content, and canopy water status--associated with early symptom development in diseased 166 

red oaks--differentiate early diseased red oaks from healthy red oaks. 167 

 168 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2021. ; https://doi.org/10.1101/2021.01.17.427016doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.17.427016
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

2. Methods 169 

2.1 Study area 170 

The study area was the University of Minnesota Cedar Creek Ecosystem Science Reserve (CCESR) 171 

(N 45º40’21”, W 93º19’94”). Located in central Minnesota at approx. 280 m above sea level, CCESR has a 172 

continental climate with cold winters (January mean -10 °C), hot summers (July mean 22.2 °C), and a mean 173 

annual precipitation of 660 mm, spread fairly evenly throughout the year. The vegetation is comprised of 174 

a mosaic of uplands dominated by oak savanna, prairie, mixed hardwood forest, and abandoned 175 

agricultural fields, with lowlands comprised of ash and cedar swamps, acid bogs, marshes, and sedge 176 

meadows. The presence of oak wilt fungus has been documented in central Minnesota since the 1940’s 177 

where it has led to widespread mortality in forests not treated for the disease. The diversity of tree species 178 

and the presence of many active oak wilt centers make CCESR well suited to assess the capacity of airborne 179 

spectroscopy to detect oak wilt in red oaks during its early stages of disease development. 180 

2.2 Airborne data collection and tree survey 181 

We collected two airborne imaging spectroscopy datasets across the whole study area on two 182 

dates in 2016. The first dataset was collected on 07/22/2016 between 9:08 am and 10:24 am local time 183 

using “CHAMP” (the CALMIT Hyperspectral Airborne Monitoring Platform), the University of Nebraska – 184 

Lincoln’s (UNL) aircraft operated by UNL's Center for Advanced Land Management Information 185 

Technologies (CALMIT) and equipped with a pushbroom imaging spectrometer (AISA Eagle, Specim, Oulu, 186 

Finland). Data were collected at an average flight altitude of 1150 m above ground level in the northwest-187 

southeast direction, yielding a spatial resolution of 0.75 m. The AISA Eagle comprises 488 spectral 188 

channels covering 400-982 nm with a spectral resolution of 1.25 nm and a field of view of 37.7° under 189 

nadir viewing conditions. To increase the signal-to-noise-ratio of the data, spectral on-chip binning was 190 

applied. The final product had 63 bands at ca. 9 nm intervals. The AISA Eagle images were geometrically 191 
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corrected using aircraft GPS and IMU data in Specim’s CaliGeoPRO software. Radiance data were 192 

converted to reflectance using the empirical line correction (Conel et al., 1987) on reflectance 193 

measurements collected from three calibration tarps (white, grey and black, with approx. 5%, 10%, and 194 

40% reflectance, respectively; Odyssey, Ennis Fabrics, Edmonton, Alberta, Canada) with a portable 195 

spectroradiometer (SVC HR-1024i, Spectra Vista Corporation, Poughkeepsie, NY, USA; 350 – 2500 nm) 196 

simultaneous to the overflights. SVC reflectance data were resampled to match the wavelength of 197 

airborne data and then used in the empirical line correction approach. The second dataset was collected 198 

using the Airborne Visible/Infrared Imaging Spectrometer - Next Generation (AVIRIS-NG) by the National 199 

Aeronautics and Space Administration (NASA) on 08/22/2016 starting at 03:43 PM local time at an average 200 

flight altitude of 1210 m above ground level in the near West-East direction, yielding a spatial resolution 201 

of 0.9 m. AVIRIS-NG comprises 432 spectral channels covering 380-2510 nm with a spectral resolution of 202 

5 nm and a field of view of 36° under nadir viewing conditions. We measured the three calibration tarps 203 

with our portable spectroradiometer (SVC HR-1024i, Spectra Vista Corporation, Poughkeepsie, NY, USA; 204 

350 – 2500 nm) during the overflights for empirical line correction. Images were delivered by the NASA 205 

Jet Propulsion Laboratory (JPL) orthorectified and preprocessed to apparent surface reflectance 206 

(Thompson et al., 2015). 207 

About one year after collecting airborne data, between June-August of 2017, we tagged 456 adult 208 

trees of 12 species with apparently healthy crowns in woodland and savanna areas (see Table S2 for 209 

species and sample sizes) including 47 Quercus ellipsoidalis E.J. Hill (red oak subgenus, particularly 210 

vulnerable to oak wilt). In addition, we tagged 41 adult Q. ellipsoidalis trees with foliar symptoms 211 

characteristic of oak wilt (i.e., bronzing and wilting leaves in sections of the canopy) (Fig. S1). Current 212 

season crown wilt in 2017 suggested that incipient or initial crown wilt was present during mid to late 213 

August 2016 when airborne spectral data were collected. Finally, we georeferenced the canopy center of 214 
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each tagged tree using a high-precision Trimble Pro6H GPS (Trimble, Sunnyvale, CA, USA) during the leaf-215 

off stage the following winter 2017-2018.  216 

2.3 Canopy spectra extraction 217 

We built a 1m-radius circular buffer around each canopy center using ArcGIS (version 10.6.1, ESRI, 218 

2011) to sample several representative fully sunlit canopy pixels per individual tree (Table S2), which were 219 

then linked to the respective species and oak wilt status (i.e., healthy, diseased). Spectral data processing 220 

employed the package spectrolab (Meireles et al. 2018) in R (version 3.6.0, R Development Core Team, 221 

2020). First, we resampled the extracted spectral data to 410-980 nm for AISA Eagle and 410-2400 nm for 222 

AVIRIS-NG (both at 5 nm resolution to match wavelengths across sensors within the VNIR range) to 223 

remove noisy wavelengths at the range ends of the sensors and reduce the number of bands in the 224 

analyses. For AVIRIS-NG data only, we removed atmospheric water absorption bands between 1335-1430 225 

nm and 1770-1965 nm and corrected artifacts at the sensor overlap region around 950 nm. Finally, for 226 

both datasets we unit vector-normalized reflectance values to reduce illumination differences among 227 

spectra (i.e., standardize differences in amplitude) (Feilhauer et al., 2010) while preserving differences in 228 

the shape of spectra that are important for species classification (Meireles et al., 2020b). After processing 229 

spectra, we calculated 21 spectral indices commonly used in the literature related to plant photosynthetic 230 

activity (e.g., RDVI, SIPI, SIF), water status (e.g., WBI, NDWI), and photoprotective stress (e.g., PRI, CRI700, 231 

NPQI) (see Table S1 for full index list). In cases where an index required a wavelength that was not a 232 

multiple of 5 and therefore missing in our spectra, we approximated the reflectance value of that 233 

wavelength based on the reflectance of the neighboring wavelengths either by using the nearest 234 

wavelength if the difference was ≤ 1 nm or otherwise by interpolation between the two nearest wavelengths. 235 

We assessed whether vector normalization affected the capacity of spectral indexes to detect oak wilt 236 

infected trees and found no major differences in spectral index performance (Appendix S1). 237 
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2.4 Statistical analyses 238 

 All statistical analyses were performed in R (version 3.6, R Development Core Team, 2020). To 239 

assess the capacity of canopy spectral reflectance to distinguish healthy trees from those infected with 240 

oak wilt, we performed partial least square discriminant analyses (PLS-DAs) (Barker and Rayens, 2003) 241 

using AISA Eagle (410-980 nm), AVIRIS-NG VNIR (410-980 nm), AVIRIS-NG SWIR (985-2400 nm) and AVIRIS-242 

NG VSWIR (410-2400 nm). Performing PLS-DAs for each spectral range allowed us to assess the 243 

importance of each range of wavelengths for accurate detection. We treated each pixel as an observation 244 

because oak wilt disease does not manifest uniformly across the canopy of a tree, especially during early 245 

stages of infection. At early stages, the fungus may have infected only a fraction of the vessels within the 246 

tree trunk. Thus, curtailing the water supply to a few branches that become symptomatic while others 247 

remain asymptomatic. Treating pixels -rather than the whole tree- as observations is critical for early 248 

detection because early infected trees may display a small number of symptomatic pixels. Thus, averaging 249 

pixels across a canopy composed of mostly healthy pixels may hide the signal from the infected pixels and 250 

lead to high false negative classification rates. In all PLS-DAs, we used ANOVA to compare models with 251 

different numbers of components and to identify the minimal number of components that maximized 252 

Kappa, a model performance statistic that quantifies model performance compared to random 253 

classification (Cohen, 1960). PLS-DAs were then run with the optimal number of components and the 254 

“Bayes” option to account for differences in prior probability distributions among classes (Brereton and 255 

Lloyd, 2014). The optimal number of components varied by model and are reported in the results section. 256 

We tested the extent to which distinguishing red oaks from other species before oak wilt status 257 

classification improved the predictive performance of our models by evaluating two approaches for oak 258 

wilt detection: a modelling pipeline that did not consider species identities (“direct” approach) and one 259 

that differentiated red oaks from other species first (“phylogenetic” approach) (Fig. 1). Both approaches 260 

were applied to each sensor type and spectral range. In the direct approach, we ignored species identities 261 
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and split the data within each class (“diseased” and “other”) into 75:25 randomly sampled subsets for 262 

model training and testing, respectively (Brereton and Lloyd, 2014; Fallon et al., 2020). We used the caret 263 

and pls packages in R (Kuhn 2008, Mevik et al. 2018) to assess model performance (accuracy, sensitivity, 264 

specificity, kappa) and obtain model-predicted values for each class (Congalton, 2001; Fassnacht et al., 265 

2006). The random sampling, model training, model testing, performance assessment loop was iterated 266 

10,000 times to generate 10,000 different training and test subsets, classification models, and 267 

corresponding performance estimates. We assessed overall performance of the direct approach by 268 

calculating the average and standard deviation of the performance outputs across all iterations. 269 
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Figure 1: Workflow of the direct and phylogenetic modeling approaches used to classify diseased red oaks. 271 

In the phylogenetic approach, data were randomly split into 75% and 25% for model training and testing, 272 

respectively. The training set was used iteratively to train three sets of 100 models for distinguishing oaks 273 

from other species, red oaks from white oaks, and diseased red oaks from healthy red oaks. The trained 274 

models were coupled to filter out any observations that do not belong to the red oak group before running 275 

the disease detection step. This filtering process was tested using the initial 25% withheld test data. The 276 

whole process was iterated 100 times using different subsets of data to generate uncertainty around the 277 

performance estimates of the model. All classification results presented in the text utilize the 25% 278 

withheld data sets. See Table S3 for sample sizes within each step. 279 

 280 

In the phylogenetic approach, we chained three distinctive PLS-DA types to solve the oak wilt 281 

classification problem sequentially through the steps illustrated in Fig. 1. First, we split our data into 75:25 282 

randomly sampled subsets and left the 25% aside to test the overall performance of the phylogenetic 283 

approach at the end of the process (see below). Second, we used the 75% to train three types of PLS-DAs 284 

specifically aimed to distinguish 1) oaks from other species, 2) red oaks from white oaks, and 3) diseased 285 

red oaks from healthy red oaks. Accordingly, each model type had a different data structure: data from 286 

all species for PLS-DAs that distinguished oaks from other species, data belonging to the red and white 287 

oak group only for PLS-DAs that distinguished red from white oaks, and data including only putative red 288 

for PLS-DAs that distinguished diseased from healthy red oaks. All three PLS-DA types were performed 289 

following the same iterative approach described above by randomly sampling a subset of the 75% of the 290 

data for training, testing against the unused data of the subset (a 25% of the 75%), and assessing predictive 291 

performance of each PLS-DA. The purpose of these iterations was not to average model coefficients but 292 

rather to test how well PLS-DA types perform on average by generating confidence intervals for model 293 

performance estimates. We assessed performance of each PLS-DA type by calculating the average and 294 
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standard deviation of the performance estimates across all iterations. We ran a total of 100 iterations for 295 

each PLS-DA type, thus obtaining 100 separate models of each type capable of distinguishing either oaks 296 

from other species, red oaks from white oaks, or diseased red oaks from healthy red oaks.  297 

Finally, as an independent validation, we sequentially applied the 100 models of each PLS-DA type 298 

to the 25% of data originally set aside through another 100 iterations. During each iteration, the 25% 299 

subset containing all species was first split into 75:25 randomly sampled subsets (stratified by class, i.e., 300 

taxonomic grouping or health status) and only the 75% of the data were used with the aim of generating 301 

variation among iterations. In the first step of the phylogenetic pipeline, the selected data—which 302 

included all species —were classified as either oak or “other species” using the oak discrimination model. 303 

Then, the data classified as oak were classified as either “red” or “white oak” using the red oak 304 

discrimination model. Lastly, the data classified as red oak were classified as either “diseased” or “healthy 305 

red oak” using the disease discrimination model. Data classified as “other species”, “white oak”, or 306 

“healthy red oak” were later reclassified as “other” and their predicted classes were compared to their 307 

true identities to evaluate predictive performance. The full phylogenetic approach was iterated 100 times 308 

to ensure that the initial 75% split reflected all the existing variability within the dataset. Hence, we report 309 

performance across a total of 10,000 (100x100) models of each type (Fig. 1, see Table S3 for sample sizes 310 

and performance). We assessed overall performance of the phylogenetic approach by calculating the 311 

average and standard deviation of the multistep classification performance outputs across all iterations. 312 

Additionally, we performed direct PLS-DAs to classify the 12 dominant species present in our study area 313 

to identify those potentially causing misclassification of red oaks. 314 

 To determine which combination of wavelengths was most useful for early detection of oak wilt, 315 

we extracted wavelength importance factors from PLS-DAs corresponding to AISA Eagle and AVIRIS-NG 316 

VSWIR and for both direct and phylogenetic approaches using the varImp() function in caret (Kuhn, 2008). 317 

We focused on these four PLS-DAs because they included the full range of wavelengths covered by each 318 
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sensor with and without considering species identity. For simplicity, we limited our selection to the top 319 

20 wavelengths with the highest average importance across all iterations within each model. 320 

To assess whether reflectance indices associated with physiology could distinguish healthy red 321 

oaks from those infected with oak wilt, we used ANOVA to perform pairwise comparisons between 322 

healthy and diseased red oaks across all spectral reflectance indices and for both AISA Eagle and AVIRIS-323 

NG. Finally, we compared the effect sizes of these pairwise comparisons using Cohen’s d statistic (Cohen, 324 

1988) to assess differences in the detectability of oak wilt between late July and late August.  325 

3. Results 326 

All classification accuracy results are reported for the sets of 25% of samples withheld from the PLS-DA 327 

modeling steps, with the standard deviation calculated across the 10,000 iterations performed. All 328 

classification results are reported in Table S3. 329 

3.1 Tree species classification accuracy was high 330 

The tree species classification PLS-DA demonstrated that it is possible to accurately identify most 331 

of our 12 study species from spectral reflectance (AISA Eagle: 73.0% (±1.7%) correctly identified, AVIRIS-332 

NG VSWIR: 89.0% (±1.3%), Appendix S2). Models correctly classified and differentiated white oaks (Q. 333 

macrocarpa) (AISA Eagle: 71.6% (±4.3%), AVIRIS-NG VSWIR: 87.3% (±2.2%)) and red oaks (Q. ellipsoidalis 334 

and Q. rubra) (AISA Eagle: 57.6% (±4.0%), AVIRIS-NG VSWIR: 80.4% (±2.4%)).However, models classifying 335 

the oak genus as a whole had higher accuracies (82.1% (±5.9%) and 94.0% (±5.0%) for AISA Eagle and 336 

AVIRIS-NG VSWIR, respectively, Appendix S3) than individual species models, similar to results from leaf 337 

level spectra (Cavender-Bares et al., 2016).  338 

3.2 Spectral reflectance models detected diseased red oaks the season prior to full crown wilt 339 
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Spectral reflectance models did not accurately distinguish diseased red oaks from other trees 340 

unless red oaks were first distinguished from other species (Table S3). In the direct approach, overall 341 

model accuracy was significantly better than expected by chance (AISA Eagle: 66.2% (±6.2%), components 342 

(k) = 22; AVIRIS-NG VSWIR: 77.7% (±8.0%), k = 28, Fig. 2), but only healthy trees (true negatives) were 343 

correctly classified with high accuracy (AISA Eagle: 95.2% (±1.7%), AVIRIS-NG VSWIR: 97.8% (±1.3%), 344 

indicating high model specificity). Diseased red oaks were misclassified (false negatives) in more than 345 

62.9% (±10.6%) and 42.5% (±14.6%) of the AISA Eagle and AVIRIS-NG VSWIR cases, respectively, indicating 346 

low model sensitivity (Fig. 2). As a result, isolating oaks and then red oaks through a stepwise phylogenetic 347 

PLS-DA model prior to disease detection reduced misclassification errors and improved the overall 348 

performance of both AISA Eagle and AVIRIS-NG VSWIR models (AISA Eagle: 83.9% (±5.9%), k = oaks: 17, 349 

red oaks: 12, diseased red oaks: 22; AVIRIS-NG VSWIR: 86% (±6.95%), k = oaks: 14, red oaks: 10, diseased 350 

red oaks: 12; Appendix S3-5, Table S3). The increase in performance was mostly due to a major increase 351 

in correct classification (true positives) of diseased red oaks (AISA Eagle: 73.9% (±9.8%), AVIRIS-NG VSWIR: 352 

74.4% (±12.6%)) (Fig. 2, Appendix S5) resulting in increased model sensitivity compared to the direct PLS-353 

DA approach.  354 
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 355 

Figure 2: A stepwise phylogenetic classification approach enhanced early detection of oak wilt in red oaks. 356 

Models that included both VNIR and SWIR wavelengths (AVIRIS-NG VSWIR) showed better prediction 357 

capacity than models including VNIR only. Blue and red circles represent correct and incorrect 358 

classifications, respectively. The size and color intensity of the circle represent the average percentage of 359 

classifications into each group based on the 25% of data withheld from 10,000 model-fitting iterations, 360 
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one standard deviation is shown in parentheses. Grey boxes describe the overall predictive performance 361 

for a given approach and dataset. Red and blue circles in colored inset boxes above each phylogenetic 362 

model describe the performance of the steps within the phylogenetic model at discriminating oaks (gold), 363 

red oaks (red), and diseased red oaks (purple), respectively. The number of components used for each 364 

model or model step (O = oaks, R = red oaks, D = diseased) is given at the top left corner of the plot. See 365 

Appendices S3, S4, and S5 and Table S3 for detailed performance of the phylogenetic steps). 366 

 367 

All steps within the phylogenetic PLS-DA model showed high performance (Table S3). The oak 368 

detection step showed high accuracy (AISA Eagle: 84% (±1.5%), k = 17; AVIRIS-NG VSWIR: 96% (±0.3%), k 369 

= 14) and only misclassified oaks as other species in 17.9% (±5.9%) and 6% (±5%) of the AISA Eagle and 370 

AVIRIS-NG VSWIR cases, respectively (Appendix S3). Similarly, the red oak detection step showed high 371 

accuracy (AISA Eagle: 85% (±2.1%), k = 12; AVIRIS-NG VSWIR: 96% (±0.6%), k = 10) and only misclassified 372 

red oaks as white oaks in 8.9% (±3.8%) and 2% (±3%) of the AISA Eagle and AVIRIS-NG VSWIR cases, 373 

respectively (Appendix S4). Finally, the diseased red oak detection step also showed high accuracy (AISA 374 

Eagle: 94% (±1.8%), k = 22; AVIRIS-NG VSWIR: 91% (±1.1%), k = 12) and misclassified diseased red oaks as 375 

healthy red oaks in only 5.5% (±1.8%) and 12.3% (±3.5%) of the AISA Eagle and AVIRIS-NG VSWIR cases, 376 

respectively (Appendix S5). We note, however, that the complexity of the model in this last step was 377 

nearly twice as high in AISA Eagle (k = 22) than in AVIRIS-NG VSWIR models (k = 12). 378 

3.3 VNIR and SWIR ranges are both important in detecting oak wilt 379 

AVIRIS-NG SWIR models showed slightly higher classification accuracy (true positive rate) of 380 

diseased trees than AVIRIS-NG VNIR models in both direct (AVIRIS-NG SWIR: 44.9% (±14.9%), AVIRIS-NG 381 

VNIR: 31.4% (±13.7%)) and phylogenetic approaches (AVIRIS-NG SWIR: 64.3% (±14.1%), AVIRIS-NG VNIR: 382 

57.9% (±14.3%)) (Fig. S2). When both AVIRIS-NG VNIR and SWIR were used together, models 383 
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outperformed those using either VNIR or SWIR only. This was the case under both direct (AVIRIS-NG 384 

VSWIR: 57.5% (±14.6)) and phylogenetic approaches (AVIRIS-NG VSWIR: 74.4% (±12.6)).   385 

When differentiating oaks from other species using AISA Eagle models, important wavelengths 386 

were clustered within the 440-550 nm, 725-750 nm, and the 850-980 nm regions of the VNIR range (Fig. 387 

3). However, in AVIRIS-NG models that included both VNIR and SWIR, the importance of these regions 388 

was outweighed by regions 1200-1450 nm, 1600-1750 nm, and 2200-2400 nm within the SWIR range. 389 

When differentiating red oaks from white oaks using AISA Eagle models, we found important wavelengths 390 

clustered within the 700-760 nm, 780-820 nm, and 860-980 nm regions. However, in AVIRIS-NG VSWIR 391 

models, the importance of VNIR regions was strongly outweighed by regions within the SWIR range except 392 

for several wavelengths at the red-edge. Within the SWIR, the important wavelengths were clustered 393 

within 1100-1200 nm and 1490-1550 nm in addition to two spikes at 1450 nm and 1700 nm. When 394 

differentiating healthy red oaks from diseased red oaks using AISA Eagle models, important wavelengths 395 

appeared at 440 nm and across the 750-980 nm region of the VNIR range. AVIRIS-NG VSWIR models also 396 

identified important wavelengths within the 700-1000 nm range but also identified important 397 

wavelengths within the SWIR range such as wavelengths 1250, 1300, 1440, 2010, 2100, and 2320 nm. 398 

Most importantly, the twenty most important wavelengths for detection of oaks, red oaks, and diseased 399 

red oaks did not overlap in the AVIRIS-NG VSWIR models (Fig. 3). This was not the case for AISA Eagle 400 

models where several of the most important wavelengths were the same in sequential classification steps. 401 

Both AISA Eagle and AVIRIS-NG VSWIR models shared important wavelengths for oak wilt detection 402 

around 800 nm and across the 910-980 nm range. 403 

 404 
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 405 

Figure 3: The twenty most important wavelengths—based on variable importance in projection (VIP)—differed among steps discriminating oaks 406 

(gold) from other species, red oaks (red) from white oaks, and diseased red oaks (purple) from healthy red oaks, and among models using either 407 

VNIR range (AISA Eagle) or both VNIR and SWIR ranges (AVIRIS-NG VSWIR). Vertical lines with numbers indicate wavelengths used in spectral 408 

indices associated with photosynthetic capacity (green), photoprotective pigment content (yellow), and water status (blue) that showed 409 
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significant differences between healthy and oak wilt-infected trees. Numbers indicate spectral indices 410 

SIPI (1), PRIM4 (2), TCARI/OSAVI (3), CMS (4), SRSIF (5), CRI700 (6), VOG2 (7), CI (8), RDVI (9), SR (10), 411 

NDWI (11), WBI (12), WBI-SWIR (13), PRIm1 (14), CCI (15). 412 

 413 

3.4 Declines in photosynthetic capacity and water status signal oak wilt 414 

Overall, spectral indices calculated from the AVIRIS-NG dataset collected during late August 415 

showed more pronounced differences between healthy and diseased red oaks than those calculated from 416 

the AISA Eagle dataset collected in late July (Fig. 4). Spectral indices associated with canopy 417 

photosynthetic capacity showed significant differences between healthy and diseased red oaks for both 418 

sensors and time periods. Within the AISA Eagle dataset, all indices associated with photosynthetic 419 

capacity except Normalized Pigment Chlorophyll Index (NPCI) and Simple Ratio (SR) were significantly 420 

different between healthy and diseased red oaks (Table S4). Within the AVIRIS-NG dataset, all indices 421 

associated with photosynthetic capacity except NPCI were significantly different between healthy and 422 

diseased red oaks. In addition, the differences between healthy and diseased red oaks were markedly 423 

greater for AVIRIS-NG data relative to the AISA Eagle data. Most spectral indices associated with 424 

photoprotective stress showed no significant differences between healthy and diseased red oaks. Those 425 

that did—Photochemical Reflectance Index (PRIm4), Carotenoid Reflectance Index (CRI700), and (only in 426 

AVIRIS-NG) PRIm1—share wavelengths with indices of photosynthetic capacity, such as the SR and 427 

Transformed Chlorophyl Absorption in Reflectance Index/Optimized Soil-Adjusted Vegetation Index 428 

(TCARI/OSAVI) indices. Indices associated with canopy water status also showed significant differences 429 

between healthy and diseased red oaks, but only within the AVIRIS-NG dataset. The effect sizes of the 430 

differences were comparable to those of indices associated with photosynthetic capacity. Within the AISA 431 

Eagle dataset, Water Band Index (WBI)—the only spectral index associated with canopy water content 432 
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that could be calculated using the VNIR range—did not show significant differences between healthy and 433 

diseased red oaks.  434 

 435 

Figure 4: Spectral indices associated with photosynthetic (green) and water status (blue) differentiated 436 

early diseased red oaks from healthy red oaks. Each point represents the magnitude of the difference 437 

between healthy and diseased trees—shown by the absolute value of the Cohen’s d—for a given index 438 

and time of data collection (July or August). Effect size can be understood as the amount of overlap 439 

between the distributions of two groups. For an effect size of 0, the mean of group 2 falls within the 440 

50th percentile of group 1, and the distributions overlap completely, meaning there is no difference 441 

between them. For an effect size of 0.8, the mean of group 2 falls within the 79th percentile of group 1; 442 

thus, an average sample from group 2 would have a higher value than 79% of all samples from group 1 443 

(Sullivan and Feinn, 2012). The Indices associated with photoprotective pigments (yellow) fail to do so 444 
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unless they also include wavelengths associated with photosynthetic capacity. Differences between 445 

healthy and diseased trees were more pronounced when indices were calculated from AVIRIS-NG 446 

spectral data collected in late August. Lines represent 95% confidence intervals. Effect sizes are 447 

significantly different from zero when their confidence intervals do not overlap with the red zero line. 448 

 449 

4. Discussion 450 

The negative impacts of oak wilt and its rate of spread across North American ecosystems calls for 451 

early detection tools that accurately identify trees affected by oak wilt at landscape scales (Haight et al., 452 

2011; Hulcr and Dunn, 2011; Juzwik et al., 2011). We show that PLS-DA models developed from airborne 453 

spectroscopic imagery can accurately detect oak wilt-infected red oaks at early stages of disease 454 

development. We demonstrate an approach to identify oak wilt-infected red oaks, which takes advantage 455 

of the physiological and phylogenetic information embedded in their reflectance spectra (Cavender-Bares 456 

et al., 2016; Meireles et al., 2020a). By first differentiating oaks from non-oaks, and then identifying red 457 

oaks—which are highly susceptible to rapid disease development—classification models based on spectral 458 

reflectance data can be used to distinguish oak-wilt affected and healthy red oaks with high accuracy. We 459 

also found that spectral indices associated with plant photosynthesis and water status can confirm 460 

infection and are potentially sensitive to disease progression through physiological decline. Spectral 461 

indices also provide a mechanistic basis for understanding and tracking the physiological changes that 462 

allow classification models to detect oak wilt.  463 

4.1 Including short wave infrared reflectance improves model accuracy 464 

Including SWIR wavelengths in spectral reflectance models increases oak wilt detection accuracy. 465 

We observed higher oak wilt detectability in direct AVIRIS-NG SWIR and VSWIR than direct AISA Eagle 466 
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VNIR models. Direct PLS-DAs using AVIRIS-NG VNIR showed similar performance to that of AISA Eagle VNIR 467 

models (Fig. S2). We can therefore attribute the greater performance of direct AVIRIS-NG VSWIR models 468 

to the addition of SWIR wavelengths. Direct AISA Eagle models rely on many of the same wavelengths to 469 

distinguish red oaks from other species and to distinguish diseased and healthy red oaks (Fig. 3). As such, 470 

they often misclassify diseased red oaks as other species (Fig. 2, Appendix S3 & S4). However, even direct 471 

models show much higher accuracy when both VNIR and SWIR ranges are included (AVIRIS-NG VSWIR). 472 

The additional information-rich SWIR wavelengths allow models to use different wavelength regions to 473 

distinguish oaks from other species, red oaks from white oaks, and diseased red oaks from healthy red 474 

oaks (Fig. S2). Consequently, the critical wavelengths to identify oaks, red oaks, and diseased red oaks 475 

overlap less, which reduces the chances of confusion among classes (Fig. 3). Most likely, including SWIR 476 

reflectance provides temporally stable spectral features containing phylogenetic information associated 477 

with plant structural traits (Cavender-Bares et al., 2020; Meireles et al., 2020a) that serve to reduce 478 

misclassification of diseased red oaks as other species. Indeed, we find that the SWIR range was more 479 

important than the VNIR range in correctly identifying oak species and red oaks (Fig. 3). In particular, the 480 

20 and 17 most important wavelengths for identifying oaks and red oaks, respectively, fell within the SWIR 481 

range. The SWIR was also important for distinguishing diseased from healthy red oaks. Among the most 482 

important SWIR wavelengths were those associated to plant water content and leaf chemistry such as 483 

protein, sugars, lignin, and cellulose content (Asner et al., 2018; Fourty et al., 1996). Based on our results, 484 

the SWIR range appears to contain disease-specific and phylogenetic information highly relevant to 485 

detecting symptoms of oak wilt and to identifying its hosts. Hence, similar to previous work combining 486 

VNIR reflectance with SIF or thermal data (Zarco-Tejada et al., 2018, 2016), when SWIR wavelengths are 487 

combined with VNIR in oak wilt detection models, detection rates are maximized. 488 

4.2 A multi-step phylogenetic approach increases accuracy 489 
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Partitioning the classification process into simple binary steps within a phylogenetic framework 490 

reduces potential misclassification and increases model accuracy. We used a hierarchical classification 491 

approach (Allen and Walsh, 1996; Townsend et al., 2009; Wolter et al., 1995) aimed towards distinguishing 492 

the more susceptible red oaks from white oaks and other species that are less susceptible to oak wilt. 493 

During the first step, phylogenetic models distinguish between oaks and other species because the 494 

reflectance spectrum shows phylogenetic conservatism among the oaks (Cavender-Bares et al., 2016; 495 

Cavender‐Bares, 2019), including those infected by oak wilt. The model is not required to distinguish 496 

between healthy and diseased conspecifics in this first step, thus simplifying the task. Reducing the 497 

number of potential classes becomes increasingly important as the individuals become more 498 

phylogenetically related—and hence more phenotypically similar—which makes correct classification 499 

more challenging (Meireles et al., 2020b). Removing non-oak species significantly reduces variation in 500 

phylogenetically conserved regions of the spectra, allowing the model to be trained on spectral 501 

differences that distinguish white and red oaks and subsequently on the spectral variation that 502 

distinguishes diseased and healthy red oaks. Because of these filtering steps, the disease detection 503 

algorithm is highly accurate (>90%; Fig. 2, appendix S5) and significantly more accurate than a single-step, 504 

direct approach. While the phylogenetic approach gains complexity in terms of number of steps, each 505 

binary classification step is simple and requires few independent components. Although each step 506 

generates classification errors that propagate through the modeling pipeline, these errors are captured 507 

by the overall performance metrics, indicating that the increase in accuracy gained through the 508 

phylogenetic filtering outweighs the propagated errors. Interestingly, implementing a stepwise 509 

phylogenetic approach boosted model performance to a greater extent in AISA Eagle and AVIRIS-NG VNIR 510 

than in AVIRIS-NG VSWIR models. This suggests that the main contribution of the phylogenetic approach 511 

is the same as that of adding SWIR range. The phylogenetic approach increases accuracy by reducing the 512 

number of classes to compare while inclusion of the SWIR range increases accuracy by increasing the 513 
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number of informative wavelengths. Reduced boosts from using the stepwise phylogenetic approach in 514 

the performance in AVIRIS-NG VSWIR relative to VNIR models may be a consequence of including SWIR 515 

and increasing informative wavelengths beyond what is available within the VNIR, avoiding 516 

misclassification (see previous section, Fig. 3). Reduced boosts in AVIRIS-NG VNIR relative to AISA Eagle 517 

VNIR models could be due to differences in sampling date or to sensor type and/or data quality (e.g., 518 

associated with spectral binning and/or signal-to-noise).  519 

Our results highlight that species classification is critical for increasing model accuracy for a simple 520 

reason: if the disease is host-specific, modeling can be more tractable by detecting potential hosts first. 521 

Future studies should test whether phylogenetic models with simple binary classification steps such as 522 

the one used here make disease detection models generic enough to be applicable across different sites 523 

and years.  524 

4.3 Targeted spectral indices help understand physiological changes associated with oak wilt disease 525 

Diseased red oaks were more easily differentiated from healthy red oaks by spectral reflectance 526 

indices associated with photosynthetic activity (Carter and Knapp, 2001; Vogelmann et al., 1993; Zarco-527 

Tejada et al., 2002) and water status (Ceccato et al., 2001; Serrano et al., 2000; Ullah et al., 2014) than by 528 

photoprotective pigment content indices. Indices based on photoprotective pigment content could not 529 

differentiate diseased trees from asymptomatic trees unless they included wavelengths also associated 530 

with photosynthetic activity (Figs. 3 & 4). These results suggest that oak wilt infection in adult trees in 531 

natural ecosystems triggers declines in photosynthetic rate, stomatal conductance, and water content 532 

just as in greenhouse seedlings (Fallon et al., 2020). All indices showed greater sensitivity in late August 533 

relative to late July suggesting that oak wilt symptoms had progressed. Moreover, our results also uncover 534 

an important temporal pattern in physiological decline: photosynthesis declines first, and dehydration 535 

follows. By July, indices of photosynthetic activity showed greater sensitivity to oak wilt than indices of 536 
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water status (Fig. 4). At early stages, both tylose production (in response to infection) and plugging of 537 

vessels by metabolites of the fungus are likely to have contributed to diminished water transport.  In turn, 538 

reduced transpiration and stomatal closure induced by reduced water supply is expected to have caused 539 

photosynthetic decline (Fallon et al., 2020). However, trees may not yet have experienced enough 540 

vascular occlusion to cause canopy dehydration. By August, water status indices showed greater overall 541 

sensitivity to oak wilt than photosynthetic activity indices (Fig. 4). Although different sensors were used 542 

at each time point, the normalized indices should be comparable across sensor types. The results are 543 

consistent with experimental work indicating that photosynthesis is the first physiological process to 544 

decline as stomata shut down (Fallon et al., 2020) followed by water content as vessel occlusion develops 545 

and the fungus damages cell walls and membranes (e.g., through pathogen-produced toxins) leading to 546 

dehydration and tissue death (Oliva et al., 2014). Pairing photosynthetic activity and water status indices 547 

can provide powerful tools to delineate oak wilt centers across areas of the landscape dominated by red 548 

oaks. Pockets of affected trees may show a center-outward radial gradient with dry dead trees at the 549 

center, dehydrated and photosynthetically impaired trees in the middle, and trees with slightly lower 550 

photosynthetic capacity than expected around the edge of the pocket (i.e., early disease development 551 

phase) (Figs. 5, S3, & S4). Hence, paired indices could provide information about the stage of disease 552 

development, thus allowing managers to better assess risk of spread and adjust the magnitude of their 553 

interventions accordingly (Pontius and Hallett, 2014).  554 
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 555 

  556 

Figure 5. A typical oak wilt pocket observed through true color and a combination of spectral indices 557 

using the 2016 AVIRIS-NG data. A tree killed by oak wilt during 2015 (orange circle) can be observed at 558 

the center of the oak wilt pocket in true color (red as 640 nm, green as 550 nm, and blue as 470 nm). 559 

Three diseased trees (blue circles) stand next to it that cannot be detected with true color images. Both 560 

dead and diseased trees are surrounded by an outer ring of healthy trees. Diseased trees become 561 

apparent through spectral indices associated with photosynthetic function and water status -such as the 562 

Carter-Miller Stress index (CMS), Chlorophyll Index red edge (CI), and Water Band Index in the SWIR 563 

range (WBI SWIR)- placed on the red (R), green (G), and blue (B) channels. 564 

 565 

5. Conclusions 566 

Protecting ecosystems from the threats of invasive species resulting from globalization and a 567 

changing climate is one of the most pressing challenges of our times (Díaz et al., 2019; Liebhold et al., 568 

1995; Waller et al., 2020). Early detection greatly enhances the ability of managers to prevent the 569 
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enormous ecological and economical damage caused by invasive species (Juzwik, 2000; Poland et al., 570 

2021). Airborne spectroscopic imagery enables landscape-level detection of diseases caused by invasive 571 

pathogens, like oak wilt, at their earliest stages due to the phylogenetic and physiological information 572 

embedded in spectral reflectance. SWIR wavelengths increased model accuracy by enabling detection of 573 

disease-specific hosts, a critical step in identifying forested areas vulnerable to infection. Additionally, 574 

inference of the physiological basis of oak wilt symptom development using spectral indices associated 575 

with known spectral features points to the potential to delineate oak wilt centers using remote sensing 576 

products that monitor canopy photosynthetic capacity and water status. Importantly, in our study 577 

landscape detection was made possible by coupling airborne spectroscopic imagery with traditional 578 

knowledge from taxonomic and disease experts and high precision ground GPS reference data. While 579 

landscape detection of oak wilt will facilitate the task of detecting infected trees, there is still much work 580 

to do. Future studies should assess whether PLS-DA models will be general enough to detect oak wilt 581 

across years and sites and whether the physiological basis of oak wilt symptom development will be 582 

sufficient to make accurate inferences about the presence of new oak wilt infections. Further investigation 583 

of the physiological changes that accompany disease progression may also provide the link to scale 584 

spectral detection to regional scales via spaceborne platforms. The work done here points to the benefit 585 

of research that might lead to an “optimal” remote sensing system (airborne or satellite) for detecting 586 

invasive diseases. We hope that our research motivates such work. 587 
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